
Chaos Engineering
and Service Ownership
at Enterprise Scale

Jay Hankins (he/him)

Lead Chaos Engineer at Salesforce

Back to 2015

Salesforce infrastructure in 2015:

● first-party data centers

○ inelastic infrastructure

● simpler application footprint, security

controls, and ownership models

● SREs owned the availability of

“everything”

○ and had widely-scoped privileged shell
access

Salesforce Chaos Engineering in 2015:

● Relied on privileged shell access:

○ Killing processes

○ Rebooting hosts

● Tight partnership with network or data

center engineers:

○ Turning off ports on network switches

○ Data center cold restarts

A Typical Game Day Exercise in 2015

Salesforce infrastructure in 2015:

● first-party datacenters
○ inelastic infrastructure

● simpler application footprint, security
controls, and ownership models

● SREs owned the availability of
“everything”

● SREs had widely-scoped privileged shell
access

A typical chaos game day in this era:

● An SRE would use privileged shell access
to run commands manually.

● They would then observe critical host and
application metrics, while the game day

project team would scribe findings.

Evolving Infrastructure and Service Ownership

● Business needs demanded larger and more flexible infrastructure

○ Sales growth, new products, companies acquired, new regulations, etc.

● Public cloud (Hyperforce) infrastructure enforces new internal requirements and operational

practices.

○ New infrastructure brings a bevy of “foundational” services such as PKI, secrets, ingress and egress
proxies, etc.

○ It also eliminates most interactive (shell) access.

● Salesforce fully embraces service ownership.

○ No more “throwing it over the fence” to SRE.

Chaos Engineering: a part of Service Ownership

Challenges:

● In a service ownership world, SRE has less

of a centralized role

● A centralized game day team can’t learn

all the architectures and edge cases of

new/designed services for public cloud

● New technical constraints around

privileged (shell) access made previous

chaos approaches unfit for Hyperforce.

Shifting our approach:

● Service owners know their service better
than anyone else.

● Shifting left in the development cycle

reduces turnaround time on discovering

and fixing issues.

● We should deliver a Chaos Engineering

Platform that lets service owners run

chaos experiments safely and easily.

Major Scale and Shift-Left Challenges

1. Size and shape of our AWS footprint

2. Granularly attacking multi-tenant compute clusters

3. Simplifying discovered inventory and access

4. Maintaining safety, observability, and outcomes

Challenge 1: Our AWS Footprint

Challenges:

● Our Core CRM product is hundreds of

services spanning 78 AWS accounts.

● Services may have their application,

database, cache, etc. in separate accounts.

● It’s infeasible for humans to log into every

account to inject failures.

Requirements:

● We need a privileged chaos engineering

platform that can run attacks in AWS in

multiple accounts simultaneously.

Challenge 2: Multi-tenant Kubernetes Clusters

Challenges:

● Services are deployed across many
namespaces ⨯ clusters.

● Service owners should only be able to
attack their service, not shared services or
the cluster itself.

● Service owners may know less about
Kubernetes infrastructure.

Requirements:

● We need a privileged chaos engineering

platform that can orchestrate attacks in

multiple namespaces and clusters

simultaneously.

● We need the platform to provide failures

without requiring ad-hoc cluster

configuration, service accounts, etc.

○ Service owners should only need minimal
knowledge of the k8s API and not need to
deploy chaos workflows, configmaps, etc.

Challenge 3: Inventory and Role-Based Access

Challenges:

● Discovering and accounting for all the
different resource types owned by a
service team

○ e.g., a K8s deployment, an S3 bucket, an
RDS database,

● Enforcing RBAC and controlling blast
radius based on job role and service
ownership

Requirements:

● Our chaos platform should integrate with,

discover, and group all sorts of

infrastructure resources.

● Our chaos platform should integrate with

SSO to match service owners to their

services

● Our chaos platform should make use of

opinionated tagging/labeling to match

group services and service owners

Challenge 4: Safety, Observability, and Outcomes

Challenges:

● What if there is an ongoing incident or
maintenance? It might be unsafe for
service owners to run experiments.

● How should service owners measure the
success of their chaos experiments, and
how do we track improvement?

Requirements:

● Our chaos platform should integrate with

our change and incident management

database and refuse to attack when it’s

unsafe.

● Service owners should measure their

chaos experiments through the same

SLOs and monitors that are used in

production.

Recommendations for a self-service chaos platform

1. Chaos tooling should be multi-substrate to support future flexibility.

2. Make use of RBAC and tags, labels, etc. to control blast radius and limit attack access.

3. Prioritize extensibility to integrate with custom systems, like we did for change management.

4. Seek out a sophisticated toolbox of attacks to support both large-scale GDE-style

experiments AND precision attacks that affect individual services/teams.

5. Use SLOs, make them part of your hypotheses, and make sure service owners observe

experiments as they would observe production.

The Ongoing Role of Game Day Exercises

Optimize for purpose and expertise.

1. Service owners take charge of concrete technical fixes

2. GDE teams can support:

a. compliance exercises, such as SOC2, data RPO/RTO

b. Organizational/people & process chaos, including incident response

c. Shared IT service chaos, such as attacking your wiki/operational runbooks

d. Table-top exercises to help service owners scope their attacks

 Thank you

