
Scaling Enterprise Development
with Cloud IDEs: Security and
Performance at Scale

Conf42 Platform Engineering 2025

Jayant Tyagi, Lead Member of Technical Staff, Salesforce

Introduction: The Challenge of Scale

Modern Enterprise Challenges

Huge codebases and distributed teams

Local development slow and hard to manage

Laptops struggle with large builds/tests

Heavy toolchains tax local machines

What are Cloud IDEs?

Remote, cloud-hosted development environments accessed via
browser or remote IDE. They offload heavy computing to the cloud,
letting developers use a thin client.

In one line: "Scaling development with Cloud IDEs means faster, more secure engineering at enterprise scale."

Motivation for Cloud IDEs in Enterprise Environments

Large Codebases & Heavy Workloads
Ever-growing enterprise codebases can cripple local machines. In
companies like Uber or Slack, moving dev to remote servers
eliminated laptop CPU strains 3 builds run on powerful cloud VMs
instead.

Reliable Development Environments
Constantly updating your local development setup is a risky game.
Each new OS, patch, or library can disrupt your workflow and
undermine the reliability of your development environment. But by
moving to remote cloud-based development, you can provide a
consistent, dependable experience for all your engineers.

Supercharging Development with
Cloud-Based Collaboration
Slack faced a common challenge - how to seamlessly integrate development across
multiple codebases and repositories, often the case when acquiring new products.
Our solution? A remote, cloud-based development environment that enabled holistic
feature development and end-to-end testing.

Gone were the days of making changes in individual repos and waiting anxiously for
them to sync up. Instead, Slack's developers could work in a single, unified
environment where their two codebases ran side-by-side in Docker containers on the
same virtual machine. With port-to-port communication between the containers,
they could tackle feature work and testing in a truly integrated way.

This cloud-powered approach was a game-changer, transforming the development
workflow from a brittle, disjointed experience to one of streamlined efficiency and
collaboration. No more waiting, no more uncertainty - just a smooth, reliable path
from ideation to deployment.

Benefits Over Traditional Local Setups

Scalability & Speed
Cloud dev environments offer on-demand high-end compute.
Builds and tests run on servers with ample CPU/RAM, drastically
cutting execution times (e.g. one team cut a 9 minute build down to
2 minutes).

Consistency & Parity
No more "it works on my machine" problems. Every developer uses
a standardized environment image, so tools, libraries, and
configurations are uniform.

Security & Auditing
Source code and sensitive data stay within controlled cloud
networks, not on loose laptops. Access is gated through centralized
IAM, and actions can be logged centrally.

Faster Onboarding
New engineers can start coding on day one. Instead of spending
days setting up a laptop with dozens of dependencies, they launch
a pre-configured cloud workspace in minutes.

Architecture Overview for Remote
Development Environments

Remote Environment Instances
Each developer gets a personal remote workspace (VM or container)
with isolated resources for security and performance consistency.

Secure Connectivity
Developers connect over TLS-encrypted tunnels with identity
verification, often through an identity-aware proxy or VPN.

Dev Environment Images
Standardized images include all necessary libraries, tools, and
configurations, ensuring identical environments for everyone.

Security Strategies: Identity,
Access, and Code Protection

Strong Identity & SSO
Enforce login through corporate
identity (SSO) to access dev
environments. Use identity-aware
proxies or token-based auth so
only authorized users can connect.

Isolated & Private Networks
Place cloud dev environments in
isolated networks with firewalls
blocking inbound traffic.
Developers access via secure
tunnels.

Least Privilege & Access Controls
Apply Role-Based Access Control (RBAC) and least privilege principles. Integrate
with your cloud IAM for centralized user management.

Performance Optimization at Scale

Reduce Cold Starts with Prebuilds
Prepare environments in advance with prebuilds that prepopulate
the dev environment with code, dependencies, and extensions.
This can reduce startup time from minutes to seconds.

Warm Pools of Environments
Maintain a small pool of "ready-to-go" environments to eliminate
wait times. Slack implemented this with an AWS Auto Scaling
Group, achieving 90-second startup times.

Caching of Dependencies & Builds
Leverage caching at multiple levels. Dependencies should be
cached either in the base image or in nearby artifact caches so
builds don't constantly re-download them.

High-Performance Compute on Demand
Provide beefy machine types when needed. Uber's "Devpod"
system allows choosing large machines (up to 48 CPU cores) for
demanding builds/tests.

Developer Flow
1 1. Request Environment

Developers initiate a new remote environment for a specific feature branch with
a simple CLI command. This signals the system to prepare a dedicated
workspace.

2 2. Automated Provisioning
The system intelligently provisions a VM from a warm pool, installs all required
dependencies, initializes development tools, and automatically checks out the
target Git branch. This process is fully automated.

3 3. Instant Connection
Once provisioned, the remote environment is ready for use. Developers connect
seamlessly via SSH from their preferred code editor (e.g., VS Code, Cursor),
gaining immediate access to their fully set up workspace.

4 4. Code with Confidence
All coding, debugging, and testing occurs within the secure, high-performance
cloud environment, ensuring consistency, rapid feedback, and keeping sensitive
code off local machines.

Dynamic Provisioning: Tailored Environments for Every Workflow

Frontend Development

Using get-remote-dev --frontend provisions an
environment with all necessary UI frameworks, hot-
reloading capabilities, and a VM with larger compute
resources (e.g., mx.large) to handle demanding graphical
processes and browser-based tools.

Backend Development

For backend work, the command get-remote-dev --
backend ensures your VM is optimized for compilation
speed, database interactions, and API testing, providing
robust compute and memory tailored for server-side logic
and microservices.

Machine Learning & Data Science

The get-remote-dev --ml option spins up a powerful
environment specifically for ML and data science tasks,
featuring GPU-enabled VMs, pre-installed libraries like
TensorFlow/PyTorch, and ample storage for large
datasets.

Secure Source Code Access: SSH vs. OAuth

' SSH Agent Forwarding: Secure & Preferred

Allows your local SSH key to authenticate on the remote
environment without exposing the private key. Your key stays on
your local machine, enhancing security by never transferring

sensitive credentials. Ideal for strict security policies.

GitHub OAuth App: Convenient & Managed

Authenticates with a token granted by a GitHub OAuth application.
Provides easy setup and integration, but requires careful
management of token scopes and revocation. Tokens could

potentially be misused if compromised.

For ultimate security, SSH Agent Forwarding is recommended as it minimizes credential exposure, keeping private keys off remote machines.

Innovative Development: Frontend Grafting
Frontend Grafting is a powerful capability enabled by remote development environments, allowing developers to
connect their local frontend changes to a backend running in a different environment; be it another development
VM, a staging environment, or even a production system.

This innovative approach provides several key advantages:

Real-World Data Testing:
Test your user experience with actual production-like data without impacting live systems, ensuring a robust
and reliable user interface.

Accelerated Development Cycles:
Rapidly iterate on frontend changes by decoupling them from backend deployment cycles, allowing for
quicker feedback and faster feature delivery.

Enhanced Collaboration:
Frontend and backend teams can work more independently, testing their respective changes against stable,
shared environments.

Reduced Setup Overhead:
Developers avoid the complexity of setting up and maintaining multiple backend services locally just to test
frontend interactions.

Integration with Enterprise Systems
Version Control & PR Workflow

Remote dev environments integrate tightly
with source control. When a developer
starts a cloud IDE from a repository, it

automatically clones the repo and can even
create a branch.

CI/CD Pipeline Alignment
The same container image used for dev is
used in CI for tests, ensuring parity.
Developers can easily trigger CI workflows
from their cloud IDE.

Secrets and Credentials
Integrate with enterprise secrets
management so that developers can easily
fetch API keys or tokens when needed
without exposing them.

Internal Toolchain Integration
Cloud dev environments can integrate with

issue trackers, code review systems, test
dashboards, and artifact repositories.

Operational Playbooks and Phased Rollout Strategy

Pilot Program
Start with a small pilot team or project. Choose a group of
developers to trial the cloud IDE. During this phase, collect feedback
aggressively to identify rough edges.

Define Playbooks
Develop clear runbooks for common operational tasks, including
environment provisioning, updates to base images,
troubleshooting, and incident response.

Phased Team Onboarding
Roll out to additional teams in waves. Use lessons from the pilot to
refine the onboarding documentation and environment
configurations for each subsequent phase.

Training and Documentation
Provide training sessions and thorough documentation for
developers on how to use the new system effectively.

Iterate Based on Feedback
Make the rollout an iterative process. After each team onboards, gather feedback:
Are environment start times acceptable? Do they have all necessary admin rights or
tools? Are there any blockers that force them back to local dev?

Use that feedback to adjust configurations or add features. Slack's team gathered
extensive feedback across engineering and iterated their remote dev proposal
multiple times before finalizing it, which smoothed adoption.

Gradually enforce usage of the cloud environment as it proves stable.
Initially provide generous resource limits to avoid performance complaints,
then optimize as confidence grows.

Managing Infrastructure Costs and Balancing Performance

On-Demand and Ephemeral Usage
Configure environments to shut down when not in use.
Automatically suspend or delete dev environments after a period
of inactivity (e.g., 30 minutes or 1 hour idle).

Right-Sizing Instances
Provide a range of environment sizes and guide developers to use
the appropriate size for the task. Default to a cost-efficient size
and let them upscale only if needed.

Resource Pooling & Multi-Tenancy
Pack multiple dev environments on a single VM host where
possible to improve utilization. A K8s cluster can schedule
containers so that resources are shared efficiently.

Monitoring Cloud Costs
Integrate with cloud cost management tools to gain visibility into
dev environment spending. Break down cost by team, project, or
individual to find patterns.

Balancing Performance vs Cost

It's a balancing act - we want developers to have fast, frictionless environments, but
also must rein in waste. One approach is to define performance SLOs (e.g.,
environment startup should be under 2 minutes, test suite under 10 minutes) and
provision just enough resources to meet those.

If performance is good, consider downgrading instance sizes to save cost without
hurting dev experience. Conversely, if devs are waiting on tasks, that's a cost too
(engineering time lost), so it may justify more spending on better hardware.

"Don't penny-pinch on developer minutes if a bit more compute can save hours of
work."

Governance vs. Developer Freedom

Policy Guardrails
Enterprise cloud IDE platforms come with
policy controls to enforce security and
compliance. Admins can restrict allowed
base images, machine sizes, and network
access for dev environments.

Access & Compliance Management
Governance features include
comprehensive audit logs of environment
usage. This creates an audit trail for
compliance (SOC 2, GDPR, etc.) without
developers needing to do anything extra.

Developer Autonomy
Allow some level of personalization so
developers feel empowered. This could
mean letting them install IDE extensions or
additional packages within their
environment.

The key is to centralize what must be standardized (the "golden image" with required security software, standard build tools, etc.) while leaving
flexibility at the edges. If a developer's customization goes awry, they can always recreate a fresh environment from the stable template.

Lessons Learned and Practical Recommendations

1

Cloud Dev Environments Shine for Big Codebases
Companies with very large codebases (monorepos or heavy
microservices) have found remote dev indispensable. If builds or
tests are consistently slow locally, that's a strong case to invest in a
cloud solution.

2

Initial Setup and Investment
Expect a non-trivial initial setup effort. Early on, allocate a dedicated
team or a few engineers to build and maintain the platform. Slack,
Uber, and others built custom solutions which took months of
work.

3

Iterate with Feedback
Involve developers in the design and continuously incorporate
feedback. Slack's success was partly due to collecting user input
and iterating on their remote dev design before broad rollout.

4

Provide Environment "Flavors"
A one-size-fits-all environment may not suit everyone. Uber created
six flavors of dev environments to cater to different needs
(frontend, backend, high-memory, etc.).

Real-World Success Stories

90%
Adoption Rate

At Slack, over 90% of engineers
voluntarily switched to remote dev
environments within months once
they experienced faster builds and

a smoother workflow.

75%
Build Time Reduction

One team cut a 9-minute build
down to just 2 minutes by moving

it to a tuned remote VM with
ample resources.

48
Core Count

Uber's internal "Devpod" system
allows choosing large machines

(up to 48 CPU cores) for
demanding builds/tests, far
beyond what a laptop could

provide.

1
Day to Productivity

New engineers can start coding on
day one instead of spending days
setting up a laptop with dozens of

dependencies.

Conclusion: Speed and Security at Scale
Key Takeaway

Scaling enterprise development with cloud IDEs enables you to speed
up engineering while enhancing security. By moving dev workflows
to the cloud, we leverage powerful infrastructure and centralized
control to solve "works on my machine" issues, accelerate builds, and
protect source code.

It's not about choosing security vs. speed 3 a well-architected cloud IDE
platform delivers both.

Our Journey Forward

Implementing cloud IDEs is a transformative project. Expect an initial
investment in setup and cultural change, but the end result is a more
scalable, efficient, and secure development process ready for the
future.

It aligns dev environments with modern cloud-native operations, and
paves the way for advanced integrations (from CI/CD automation to AI
dev tools) in a consistent environment.

Thank You

