Scaling Enterprise Development
with Cloud IDEs: Security and
Performance at Scale

Conf42 Platform Engineering 2025

Jayant Tyagi, Lead Member of Technical Staff, Salesforce

Introduction: The Challenge of Scale

Modern Enterprise Challenges What are Cloud IDEs?

e Huge codebases and distributed teams Remote, cloud-hosted development environments accessed via

: : letting developers use a thin client.
e Laptops struggle with large builds/tests & P

e Heavy toolchains tax local machines

In one line: "Scaling development with Cloud IDEs means faster, more secure engineering at enterprise scale."

Motivation for Cloud IDEs in Enterprise Environments

Large Codebases & Heavy Workloads Reliable Development Environments

Ever-growing enterprise codebases can cripple local machines. In Constantly updating your local development setup is a risky game.
companies like Uber or Slack, moving dev to remote servers Each new OS, patch, or library can disrupt your workflow and
eliminated laptop CPU strains - builds run on powerful cloud VMs undermine the reliability of your development environment. But by
instead. moving to remote cloud-based development, you can provide a
consistent, dependable experience for all your engineers.

Supercharging Development with
Cloud-Based Collaboration

Slack faced a common challenge - how to seamlessly integrate development across
multiple codebases and repositories, often the case when acquiring new products.
Our solution? A remote, cloud-based development environment that enabled holistic
feature development and end-to-end testing.

Gone were the days of making changes in individual repos and waiting anxiously for
them to sync up. Instead, Slack's developers could work in a single, unified
environment where their two codebases ran side-by-side in Docker containers on the
same virtual machine. With port-to-port communication between the containers,
they could tackle feature work and testing in a truly integrated way.

This cloud-powered approach was a game-changer, transforming the development
workflow from a brittle, disjointed experience to one of streamlined efficiency and
collaboration. No more waiting, no more uncertainty - just a smooth, reliable path
from ideation to deployment.

/
f
I
I
|
I
I
|
1
I
|
1
I
I
I
|

’

f

PORT 8080

" 800

- e em ws e e em mm o em mm o == wm

N

Benefits Over Traditional Local Setups

Scalability & Speed

Cloud dev environments offer on-demand high-end compute.
Builds and tests run on servers with ample CPU/RAM, drastically
cutting execution times (e.g. one team cut a 9 minute build down to
2 minutes).

Security & Auditing

Source code and sensitive data stay within controlled cloud
networks, not on loose laptops. Access is gated through centralized
IAM, and actions can be logged centrally.

Consistency & Parity

No more "it works on my machine" problems. Every developer uses
a standardized environment image, so tools, libraries, and
configurations are uniform.

Faster Onboarding

New engineers can start coding on day one. Instead of spending
days setting up a laptop with dozens of dependencies, they launch
a pre-configured cloud workspace in minutes.

Architecture Overview for Remote
Development Environments

Remote Environment Instances

Each developer gets a personal remote workspace (VM or container)
with isolated resources for security and performance consistency.

Secure Connectivity

Developers connect over TLS-encrypted tunnels with identity
verification, often through an identity-aware proxy or VPN.

Dev Environment Images

Standardized images include all necessary libraries, tools, and
configurations, ensuring identical environments for everyone.

Security Strategies: Identity,
Access, and Code Protection

Strong Identity & SSO Isolated & Private Networks
Enforce login through corporate Place cloud dev environments in
identity (SSO) to access dev isolated networks with firewalls
environments. Use identity-aware blocking inbound traffic.

proxies or token-based auth so Developers access via secure
only authorized users can connect. tunnels.

Least Privilege & Access Controls

Apply Role-Based Access Control (RBAC) and least privilege principles. Integrate
with your cloud IAM for centralized user management.

Performance Optimization at Scale

Reduce Cold Starts with Prebuilds

Prepare environments in advance with prebuilds that prepopulate
the dev environment with code, dependencies, and extensions.
This can reduce startup time from minutes to seconds.

Caching of Dependencies & Builds

Leverage caching at multiple levels. Dependencies should be
cached either in the base image or in nearby artifact caches so
builds don't constantly re-download them.

Warm Pools of Environments

Maintain a small pool of "ready-to-go" environments to eliminate
wait times. Slack implemented this with an AWS Auto Scaling
Group, achieving 90-second startup times.

High-Performance Compute on Demand

Provide beefy machine types when needed. Uber's "Devpod"
system allows choosing large machines (up to 48 CPU cores) for
demanding builds/tests.

Developer Flow

1

1. Request Environment

Developers initiate a new remote environment for a specific feature branch with
a simple CLI command. This signals the system to prepare a dedicated
workspace.

2. Automated Provisioning

The system intelligently provisions a VM from a warm pool, installs all required
dependencies, initializes development tools, and automatically checks out the
target Git branch. This process is fully automated.

3. Instant Connection

Once provisioned, the remote environment is ready for use. Developers connect
seamlessly via SSH from their preferred code editor (e.g., VS Code, Cursor),
gaining immediate access to their fully set up workspace.

4. Code with Confidence

All coding, debugging, and testing occurs within the secure, high-performance
cloud environment, ensuring consistency, rapid feedback, and keeping sensitive
code off local machines.

Dynamic Provisioning: Tailored Environments for Every Workflow

Frontend Development

Web Development
W Project Management

Active Projects Wanoie Proiglormasts Ogiy
B verea 1o
@ Mesiescn Deveigment

- iadate]

@ WesoDenignes

Using get-remote-dev --frontend provisions an
environment with all necessary Ul frameworks, hot-
reloading capabilities, and a VM with larger compute
resources (e.g., mx.large) to handle demanding graphical
processes and browser-based tools.

Backend Development

c dRN 2D

RIN AR RN AN BN AN

(LRI R

-
=
|’= -

For backend work, the command get-remote-dev --
backend ensures your VM is optimized for compilation
speed, database interactions, and API testing, providing
robust compute and memory tailored for server-side logic
and microservices.

Machine Learning & Data Science

The get-remote-dev --ml option spins up a powerful
environment specifically for ML and data science tasks,
featuring GPU-enabled VMs, pre-installed libraries like
TensorFlow/PyTorch, and ample storage for large
datasets.

Secure Source Code Access: SSH vs. OAuth

SSH Agent Forwarding: Secure & Preferred GitHub OAuth App: Convenient & Managed
/K;. [X “\

Github OAuth

Allows your local SSH key to authenticate on the remote Authenticates with a token granted by a GitHub OAuth application.
environment without exposing the private key. Your key stays on Provides easy setup and integration, but requires careful

your local machine, enhancing security by never transferring management of token scopes and revocation. Tokens could
sensitive credentials. Ideal for strict security policies. potentially be misused if compromised.

For ultimate security, SSH Agent Forwarding is recommended as it minimizes credential exposure, keeping private keys off remote machines.

Innovative Development: Frontend Grafting

Frontend Grafting is a powerful capability enabled by remote development environments, allowing developers to
connect their local frontend changes to a backend running in a different environment; be it another development
VM, a staging environment, or even a production system.

This innovative approach provides several key advantages:

Real-World Data Testing:

Test your user experience with actual production-like data without impacting live systems, ensuring a robust
and reliable user interface.

Accelerated Development Cycles:

Rapidly iterate on frontend changes by decoupling them from backend deployment cycles, allowing for
quicker feedback and faster feature delivery.

Enhanced Collaboration:

Frontend and backend teams can work more independently, testing their respective changes against stable,

shared environments.

Reduced Setup Overhead:

Developers avoid the complexity of setting up and maintaining multiple backend services locally just to test
frontend interactions.

Dashboard Environments Documentation Deploy

Staging backeend

Dev backend Production backend

Copyricht oitfediold corivamd of fonmest 18¢Joattite Tode nerincl

Terms of Service X Privacy Policy

Integration with Enterprise Systems

Version Control § PR Workflow

Remote dev environments integrate tightly
with source control. When a developer
starts a cloud IDE from a repository, it
automatically clones the repo and can even
create a branch.

Internal Toolchain Integration

Cloud dev environments can integrate with
issue trackers, code review systems, test
dashboards, and artifact repositories.

CI/CD Pipeline Alignment

The same container image used for dev is
used in Cl for tests, ensuring parity.
Developers can easily trigger Cl workflows
from their cloud IDE.

Secrets and Credentials

Integrate with enterprise secrets
management so that developers can easily
fetch API keys or tokens when needed
without exposing them.

Operational Playbooks and Phased Rollout Strategy

Define Playbooks

Develop clear runbooks for common operational tasks, including
Start with a small pilot team or project. Choose a group of environment provisioning, updates to base images,
developers to trial the cloud IDE. During this phase, collect feedback troubleshooting, and incident response.

Pilot Program

aggressively to identify rough edges.

Training and Documentation

Phased Team Onboardmg Provide training sessions and thorough documentation for

Roll out to additional teams in waves. Use lessons from the pilot to developers on how to use the new system effectively.
refine the onboarding documentation and environment
configurations for each subsequent phase.

[terate Based on Feedback

Make the rollout an iterative process. After each team onboards, gather feedback:
Are environment start times acceptable? Do they have all necessary admin rights or
tools? Are there any blockers that force them back to local dev?

Use that feedback to adjust configurations or add features. Slack's team gathered
extensive feedback across engineering and iterated their remote dev proposal
multiple times before finalizing it, which smoothed adoption.

® Gradually enforce usage of the cloud environment as it proves stable.
Initially provide generous resource limits to avoid performance complaints,
then optimize as confidence grows.

Managing Infrastructure Cos

On-Demand and Ephemeral Usage

Configure environments to shut down when not in use.
Automatically suspend or delete dev environments after a period
of inactivity (e.g., 30 minutes or 1 hour idle).

Resource Pooling & Multi-Tenancy

Pack multiple dev environments on a single VM host where
possible to improve utilization. A K8s cluster can schedule
containers so that resources are shared efficiently.

's and Balancing Performance

Right-Sizing Instances

Provide a range of environment sizes and guide developers to use
the appropriate size for the task. Default to a cost-efficient size
and let them upscale only if needed.

Monitoring Cloud Costs

Integrate with cloud cost management tools to gain visibility into
dev environment spending. Break down cost by team, project, or
individual to find patterns.

Balancing Performance vs Cost

It's a balancing act - we want developers to have fast, frictionless environments, but
also must rein in waste. One approach is to define performance SLOs (e.g.,
environment startup should be under 2 minutes, test suite under 10 minutes) and
provision just enough resources to meet those.

If performance is good, consider downgrading instance sizes to save cost without
hurting dev experience. Conversely, if devs are waiting on tasks, that's a cost too
(engineering time lost), so it may justify more spending on better hardware.

"Don't penny-pinch on developer minutes if a bit more compute can save hours of

work."

Governance vs. Developer Freedom

Policy Guardrails

Enterprise cloud IDE platforms come with
policy controls to enforce security and
compliance. Admins can restrict allowed
base images, machine sizes, and network
access for dev environments.

Access & Compliance Management

Governance features include
comprehensive audit logs of environment
usage. This creates an audit trail for
compliance (SOC 2, GDPR, etc.) without
developers needing to do anything extra.

Developer Autonomy

Allow some level of personalization so
developers feel empowered. This could
mean letting them install IDE extensions or
additional packages within their
environment.

The key is to centralize what must be standardized (the "golden image" with required security software, standard build tools, etc.) while leaving
flexibility at the edges. If a developer's customization goes awry, they can always recreate a fresh environment from the stable template.

Lessons Learned and Practical Recommendations

_———— — o —

Cloud Dev Environments Shine for Big Codebases

Companies with very large codebases (monorepos or heavy
microservices) have found remote dev indispensable. If builds or
tests are consistently slow locally, that's a strong case to investin a
cloud solution.

Initial Setup and Investment

Expect a non-trivial initial setup effort. Early on, allocate a dedicated
team or a few engineers to build and maintain the platform. Slack,
Uber, and others built custom solutions which took months of
work.

—_———— — 00—

Iterate with Feedback

Involve developers in the design and continuously incorporate
feedback. Slack's success was partly due to collecting user input
and iterating on their remote dev design before broad rollout.

Provide Environment "Flavors"

A one-size-fits-all environment may not suit everyone. Uber created
six flavors of dev environments to cater to different needs
(frontend, backend, high-memory, etc.).

Real-World Success Stories

90% 75%

Adoption Rate Build Time Reduction

At Slack, over 90% of engineers One team cut a 9-minute build
voluntarily switched to remote dev down to just 2 minutes by moving
environments within months once it to a tuned remote VM with
they experienced faster builds and ample resources.

a smoother workflow.

43

Core Count

Uber's internal "Devpod" system
allows choosing large machines
(up to 48 CPU cores) for
demanding builds/tests, far
beyond what a laptop could
provide.

1

Day to Productivity

New engineers can start coding on

day one instead of spending days

setting up a laptop with dozens of
dependencies.

Conclusion: Speed and Security at Scale

Key Takeaway

Scaling enterprise development with cloud IDEs enables you to speed
up engineering while enhancing security. By moving dev workflows
to the cloud, we leverage powerful infrastructure and centralized
control to solve "works on my machine" issues, accelerate builds, and
protect source code.

It's not about choosing security vs. speed - a well-architected cloud IDE
platform delivers both.

Our Journey Forward

Implementing cloud IDEs is a transformative project. Expect an initial

investment in setup and cultural change, but the end result is a more
scalable, efficient, and secure development process ready for the
future.

It aligns dev environments with modern cloud-native operations, and
paves the way for advanced integrations (from CI/CD automation to Al
dev tools) in a consistent environment.

Thank You

