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Introduction to Zero-Downtime Deployments
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Why Is Zero Downtime Necessary?

. Business Revenue @ User Experience

@ Customer Trust . SLA Obligations



Basic Kubernetes Architecture
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Understanding Kubernetes
Deployments




Old ReplicaSet

------------------------------------------------------------------------

Replica Set —» Deployment

_____________________________________

Recreate
Deployment Pod Pod

I Replaces

New ReplicaSet

Replica Set ———— Deployment

Traffic /\

Pod Pod



Simple to understand and implement

0 Downtime while creating the new deployment

Does not require additional resources e Not Suitable for high-availability applications

Helps prevent potential data conflicts e Slower rollout process

Helpful where the architecture does not o Potential risk during a deployment failure
support running multiple versions



Use Cases

e Non-Production Environments
e Statetul Applications with Single-Tenant Databases

e Applications with Low Availability Requirements
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Zero Downtime Deployments 0 Complexity in Stateful Applications

Gradual Rollout e Rollback Complexity

Rolling updates are resource-efficient e Monitoring & identifying issues is tedious

Health Checks Integration 0 Performance degradation during rollout



Use Cases

e Frequent Releases: dev or staging environments
e Scenarios requiring Gradual Rollouts

e Where maintaining multiple complete environments is costly



Strategies for Reliable & Zero-
Downtime Deployments
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Risk Mitigation 0 Complexity in Traffic Routing

Real-world Feedback e Monitoring Overhead

Gradual Resource Utilization e User Experience Inconsistency

Quick Rollback o Limited Testing Scope



Use Cases

e When Real-user Feedback is Critical
e In Performance-sensitive Deployments

e Continuous Deployment Environments
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Minimal Downtime

0 Resource Intensive

Immediate Rollback e Complexity in Data Management

Simplified Testing

e Potential for Unused Resources

Load Testing and Staging 0 Configuration and Routing Complexity



Use Cases

e Critical Production Environments
e Environments requiring robust testing before release

e Highly-available services



What is Argo Rollouts?
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Best Practices for Zero-Downtime Deployments

Rigorous Real-Time Graceful Traffic
Testing Monitoring Degradation Control



Common Pitfalls and Challenges

9 Inadequate Rollback Procedures

Overlooking Dependency Management

@ Insufficient Load Testing

@ lgnoring Database Migrations

“ Neglecting User Experience During Rollouts

O Incomplete Monitoring Configuration
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