The Art of Complex Deployments in Kubernetes

USING ARGO ROLLOUTS

Kubernetes Argo Rollouts

Hey! I'm Karan

e Software Engineer @ Storylane (YC S21)

e Ex SDE 2 @ HackerRank

e Domains: DevOps, Backend

e Blog: karanjagtiani.com/blog

Introduction to Zero-Downtime Deployments

-

End User

Load Balancer

| e

J

New Code

Deployment

Why Is Zero Downtime Necessary?

. Business Revenue @ User Experience

@ Customer Trust . SLA Obligations

Basic Kubernetes Architecture

% Kubernetes Architecture
Deployment
O 4
4 }—>D NS
W\
End User Load Balancer Pod 1
Ingress —— Service /s
Chart r
O 4 ™) 4 ™) ~ ™) POd N
—— R
() service deploy ingress \
Cluster Admin yaml yaml yaml

Understanding Kubernetes
Deployments

Old ReplicaSet

--

Replica Set —» Deployment

Recreate
Deployment Pod Pod

I Replaces

New ReplicaSet

Replica Set ———— Deployment

Traffic /\

Pod Pod

Simple to understand and implement

0 Downtime while creating the new deployment

Does not require additional resources e Not Suitable for high-availability applications

Helps prevent potential data conflicts e Slower rollout process

Helpful where the architecture does not o Potential risk during a deployment failure
support running multiple versions

Use Cases

e Non-Production Environments
e Statetul Applications with Single-Tenant Databases

e Applications with Low Availability Requirements

Old ReplicaSet

--

Replica Set —» Deployment

Rolling
Deployment Pod Pod

New ReplicaSet

:O: Replica Set ——— > Deployment
Traffic /I\
Pod o= Pod Pod

New Pod Old Pod Old Pod

Zero Downtime Deployments 0 Complexity in Stateful Applications

Gradual Rollout e Rollback Complexity

Rolling updates are resource-efficient e Monitoring & identifying issues is tedious

Health Checks Integration 0 Performance degradation during rollout

Use Cases

e Frequent Releases: dev or staging environments
e Scenarios requiring Gradual Rollouts

e Where maintaining multiple complete environments is costly

Strategies for Reliable & Zero-
Downtime Deployments

Original Deployment

Replica Set ————— Deployment

Most Traffic /\

C anary Pod Pod
Deployment
Canary Group Gradually
replaces the original deployment

Canary Group

Replica Set ——— Deployment

Some Traffic ‘

Pod

New Pod

Risk Mitigation 0 Complexity in Traffic Routing

Real-world Feedback e Monitoring Overhead

Gradual Resource Utilization e User Experience Inconsistency

Quick Rollback o Limited Testing Scope

Use Cases

e When Real-user Feedback is Critical
e In Performance-sensitive Deployments

e Continuous Deployment Environments

Blue ReplicaSet

Replica Set ——— Deployment

Blue-
Deployment Pod Pod

I lue replaces Green once

Green ReplicaSet completely stable

Traffic

New Pod New Pod

Minimal Downtime

0 Resource Intensive

Immediate Rollback e Complexity in Data Management

Simplified Testing

e Potential for Unused Resources

Load Testing and Staging 0 Configuration and Routing Complexity

Use Cases

e Critical Production Environments
e Environments requiring robust testing before release

e Highly-available services

What is Argo Rollouts?

Argo Rollouts

¥

)

Blue-Green Canary Automated Traffic
Deployment Release Rollbacks Shifting

Best Practices for Zero-Downtime Deployments

Rigorous Real-Time Graceful Traffic
Testing Monitoring Degradation Control

Common Pitfalls and Challenges

9 Inadequate Rollback Procedures

Overlooking Dependency Management

@ Insufficient Load Testing

@ lgnoring Database Migrations

“ Neglecting User Experience During Rollouts

O Incomplete Monitoring Configuration

LET'S CONNECT.

www.karanjagtiani.com

karanjagtianio4@gmail.com

/karanjagtiani

® /Karandagtiani

& karan.social <[> argo-rollouts-demo

