
The Art of Complex Deployments in Kubernetes



Hey! I'm Karan



Introduction to Zero-Downtime Deployments



End User

Deployment

Load Balancer

New Code

Old Code

Liv
e

Upcoming



Why is Zero Downtime Necessary?

Business Revenue

Customer Trust

User Experience

SLA Obligations



Basic Kubernetes Architecture



Ingress Service

service
.yaml

deploy
.yaml

ingress
.yaml

Load Balancer

Kubernetes Architecture Deployment

Pod N

Pod 1

...

End User

Chart

Cluster Admin



Understanding Kubernetes
Deployments



Replica Set

Pod

Deployment

Pod

Old ReplicaSet

Replica Set

Pod

Deployment

Pod

New ReplicaSet

Replaces

Recreate

Deployment

Traffic



Pros
Cons

1

2

3

4

Simple to understand and implement

Does not require additional resources

Helps prevent potential data conflicts

Helpful where the architecture does not
support running multiple versions

Downtime while creating the new deployment

Not Suitable for high-availability applications

Slower rollout process

Potential risk during a deployment failure



Use Cases

Non-Production Environments

Stateful Applications with Single-Tenant Databases

Applications with Low Availability Requirements



Replica Set

Pod

Deployment

Pod

Replica Set

Pod

Deployment

Pod Pod

Old ReplicaSet

New Pod Old Pod Old Pod

New ReplicaSet

Gradually

Replaces

Rolling

Deployment

Traffic



Pros
Cons

1

2

3

4

Zero Downtime Deployments

Gradual Rollout

Rolling updates are resource-efficient

Health Checks Integration

Complexity in Stateful Applications

Rollback Complexity

Monitoring & identifying issues is tedious

Performance degradation during rollout



Use Cases

Frequent Releases: dev or staging environments

Scenarios requiring Gradual Rollouts

Where maintaining multiple complete environments is costly



Strategies for Reliable & Zero-
Downtime Deployments



Replica Set

Pod

Deployment

Pod

Replica Set

Pod

Deployment

Original Deployment

New Pod

Canary Group

Some Traffic

Canary

Deployment

Most Traffic



Pros
Cons

1

2

3

4

Risk Mitigation

Real-world Feedback

Gradual Resource Utilization

Quick Rollback

Complexity in Traffic Routing

Monitoring Overhead

User Experience Inconsistency

Limited Testing Scope



Use Cases

When Real-user Feedback is Critical

In Performance-sensitive Deployments

Continuous Deployment Environments



Replica Set

Pod

Deployment

Pod

Replica Set

Pod

Deployment

Pod

Blue ReplicaSet

New Pod New Pod

Green ReplicaSet

Traffic

Blue-Green

Deployment



Pros
Cons

1

2

3

4

Minimal Downtime

Immediate Rollback

Simplified Testing

Load Testing and Staging

Resource Intensive

Complexity in Data Management

Potential for Unused Resources

Configuration and Routing Complexity



Use Cases

Critical Production Environments

Environments requiring robust testing before release

Highly-available services



What is Argo Rollouts?



Blue-Green
Deployment

Canary
Release

Automated
Rollbacks

Traffic
Shifting

Argo Rollouts



Demo



Rigorous
Testing

Real-Time
Monitoring

Graceful
Degradation

Traffic
Control

Best Practices for Zero-Downtime Deployments



Common Pitfalls and Challenges

Inadequate Rollback Procedures

Overlooking Dependency Management

Insufficient Load Testing

Ignoring Database Migrations

Neglecting User Experience During Rollouts



karanjagtiani04@gmail.com

www.karanjagtiani.com

/KaranJagtiani

/karanjagtiani

LET'S CONNECT.

karan.social argo-rollouts-demo


