Modern FinTech platforms require platform engineering solutions that can process massive
transaction volumes during peak events while maintaining accuracy, low latency, and continuous
availability. As financial services scale globally across regulatory environments, platform teams
must architect distributed database systems that support retail banking, trading, digital wallets, and

payment processing at unprecedented volumes.

By: Karthickram Vailraj




Agenda

01

Platform Engineering Foundation

Evolution of financial infrastructure, scale requirements, and database architecture's
role
03

Replication Models

Synchronous, asynchronous, and hybrid approaches for high availability

05

Architectural Patterns

Event-driven architecture, microservices, CQRS, and event sourcing

02

Database Sharding Strategies

Horizontal partitioning, geographic/regulatory sharding, and operational
management
04

Consistency Models

Strong, eventual, and causal consistency for different financial contexts

06

Case Studies & Future Directions

Real-world implementations and emerging technologies



The Evolution of Financial Infrastructure

The financial services industry has undergone a fundamental transformation in how it approaches data management and system architecture:

Traditional banking systems built on monolithic architectures have given way to distributed, cloud-native platforms
Platform engineering has emerged as a critical discipline focused on creating self-service capabilities

Modern FinTech platforms face multifaceted challenges requiring horizontal scalability while maintaining ACID properties

High-frequency trading systems must process market data and execute trades within microseconds. Digital banking platforms need to handle millions of simultaneous
users. Payment processors must validate and settle transactions across multiple currencies and regulatory jurisdictions while maintaining perfect accuracy.






Horizontal Partitioning in Financial Contexts

Financial Data Sharding

ultiple Patab3ase Instances

f

However, operations spanning multiple users or accounts (like payment transfers between users in different shards) require sophisticated distributed transaction

management to maintain performance and consistency.



& X &

Regional Compliance Cross-Border Transactions Time-Based Sharding

Geographic sharding strategies align database Payments between regions involve data stored in Historical transaction data can be partitioned by
distribution with regulatory requirements, ensuring different geographic shards, requiring complex date ranges, enabling efficient archival and
customer data remains within specific geographic routing logic and transaction coordination compliance reporting while keeping recent data in
boundaries protocols high-performance shards

Effective shard management requires automated tools and processes that handle operational complexity, including monitoring systems that track shard health,
performance metrics, and capacity utilization. Shard rebalancing represents one of the most complex operational challenges as user bases grow unevenly or transaction

patterns change.



Synchronous replication provides the strongest consistency guarantees, ensuring all replicas
contain identical data at any point in time. This is essential for critical financial operations where

inconsistencies could result in financial losses or regulatory violations.

Write operations must be confirmed by all replicas before the transaction is considered
complete
Ensures any replica can immediately take over without data loss during primary failure

Introduces additional latency and complexity, especially across geographic regions

Multi-master synchronous replication presents additional complexities in conflict resolution




Asynchronous & Hybrid Replication

Asynchronous Replication Hybrid Replication Strategies
Enables financial platforms to achieve global scale while maintaining acceptable Modern financial platforms often implement hybrid approaches combining
performance. Write operations are committed to the primary database and then synchronous and asynchronous replication based on data classification:

propagated to replicas asynchronously.

. Critical financial data uses synchronous replication within a region and
Reduces write latency and enables geographic distribution of read operations asynchronous across regions

. Less critical data may use asynchronous replication exclusively
Introduces possibility of temporary data inconsistencies between replicas . Requires sophisticated data classification and routing systems

. Applications must handle different consistency models for different data
Requires careful monitoring of replication lag types

Needs sophisticated conflict detection and resolution mechanisms



Strong Consistency

Eventual Consistency

Requires conflict resolution mechanisms

Needs monitoring for replication lag

Middle ground for complex financial workflows

Ensures causally related operations maintain
order

Requires timestamp and dependency tracking



Financial Flow

Essential for building scalable financial
platforms that handle complex, multi-step
processes while maintaining loose coupling

between services.

Event sourcing provides complete audit

trails for regulatory compliance

Requires careful attention to event

ordering and delivery guarantees

Event streaming platforms like Apache
Kafka have become central to many

financial architectures

Enables financial platforms to organize
complex business logic into manageable,

independently deployable services.

Domain-driven design helps identify

appropriate service boundaries

Requires sophisticated transaction

management across service boundaries

Service mesh technologies provide
essential capabilities for security and

monitoring



o)
-
c O
3
2 h
g€
O o
S
T







Isaster recovery redirecting processing




Cloud-Native Database AI/ML Integration & Quantum
Technologies Security

Hybrid security approaches during

transition periods




Thank You



