

Site Reliability at the Quantum Frontier: Ensuring Robustness in Hybrid Quantum-Classical Neural Networks

Exploring how hybrid systems fuse quantum computing with classical neural networks to revolutionize machine learning and optimization challenges.

#### By: Karthikeyan Rajamani

### Agenda

- Hybrid Quantum-Classical Neural Networks
- Parameterized Quantum Circuits (PQCs)
- Performance Benchmarks
- Training Deep Quantum Circuits
- Advantages in High-Dimensional Computation
- Medical Applications
- **Optimization Applications**
- Training Methodology
- Challenges and Limitations
- Future Outlook
- Relevance to SRE
- References

### Understanding Hybrid Quantum-Classical Neural Networks

#### **Quantum Advantages**

Leverages quantum superposition, entanglement and high-dimensional Hilbert spaces for unprecedented computational power.

Enables parallel processing through qubits in superposition states.

#### **Classical Strengths**

Utilizes established pattern recognition capabilities of traditional neural networks.

Provides stable optimization methods for training quantum circuits.

#### **Fusion Benefits**

Combines strengths of both paradigms to tackle previously intractable problems.

Creates practical pathways for nearterm quantum advantage.

## Parameterized Quantum Circuits (PQCs)

#### **Circuit Design**

PQCs form the quantum backbone of hybrid neural networks.

#### **Feature Mapping**

Encodes classical data into quantum states.



#### **Quantum Parameters**

Trainable rotation gates enable quantum learning.

#### **Classical Optimization**

Gradient-based techniques adjust quantum parameters.

### **Performance Benchmarks**

#### Accuracy



Hybrid models consistently outperform classical approaches, even with noisy data and limited quantum hardware, especially in complex or high-dimensional tasks like medical diagnostics or multi-class classification



### **Training Deep Quantum Circuits**

#### Circuit Initialization

Structure quantum layers with appropriate gate operations and qubit connectivity.

#### Parameter Optimization

Apply gradient-based methods to adjust quantum circuit parameters.

#### **Error Mitigation**

Implement techniques to reduce quantum noise impacts on performance.

#### **Model Evaluation**

Assess trained circuits against classical benchmarks for accuracy.

# Advantages in High-Dimensional Computation

### (; **|** ; )

Q

oOO

#### **Exponential Speedup**

Quantum parallelism achieves exponentially faster processing in high-dimensional spaces through simultaneous computation across entangled qubits.

#### **Enhanced Data Processing**

Quantum states inherently encode and manipulate complex highdimensional data structures with greater efficiency than classical representations.

#### **Efficient Optimization**

Quantum algorithms navigate vast solution landscapes to identify global optima with demonstrably fewer iterations than classical approaches.

#### **Dimensionality Advantage**

Hybrid architectures seamlessly integrate both quantum and classical datasets while maintaining computational advantages in high-dimensional spaces.



# **Medical Applications**



#### **Enhanced Diagnostics**

Hybrid quantum-classical models achieve unprecedented 94%+ accuracy in medical image analysis, enabling earlier detection of subtle pathologies that traditional algorithms miss.



#### **Drug Discovery**

Quantum-powered molecular simulations reduce pharmaceutical research timelines from years to months, dramatically accelerating the identification of promising therapeutic compounds.



#### **Personalized Medicine**

Advanced quantum models integrate genomic, clinical, and environmental data to design precisely tailored treatment protocols with significantly improved patient outcomes and reduced side effects.

# **Optimization Applications**



Hybrid systems consistently demonstrate stability across 200+ training iterations with variance under 2%.

# **Training Methodology**

#### **Data Preparation**

•••

:::

γγ γγ Transform classical datasets into quantum-compatible formats through amplitude encoding and feature maps that preserve critical information relationships.

#### **Quantum Forward Pass**

Execute parameterized quantum circuits that perform complex transformations on encoded data, leveraging quantum superposition for parallel computation.

#### **Classical Backpropagation**

Determine parameter gradients through finite differences or analytic methods, enabling efficient optimization across the quantum-classical boundary.

#### Hybrid Optimization

Systematically refine parameters through iterative quantum-classical feedback loops while maintaining coherence between computational domains.



# Challenges and Limitations

#### **Quantum Decoherence**

Current hardware suffers from noise and qubit instability. Error mitigation techniques still developing.

#### **Scalability Concerns**

Limited qubit counts restrict problem size. Hardware scaling faces significant engineering challenges.

#### **Barren Plateaus**

Gradient vanishing in deep quantum circuits. Requires specialized initialization and training approaches.

#### **Classical-Quantum Interface**

Data transfer between domains creates bottlenecks. Hybrid algorithms must minimize this overhead.



### **Future Outlook**



HQCNNs will revolutionize computational approaches as quantum hardware matures, solving previously intractable problems.

# Relevance to SRE (Site Reliability Engineering)

#### 1. Hybrid System Reliability

- Classical-quantum handoffs introduce latency and failure points. SREs must design robust interfaces and fallback logic to ensure continuous uptime.
- Think of quantum nodes as distributed compute — same principles of observability, retry logic, and error isolation apply.

#### 2. Error Mitigation Strategies

- Analogous to resiliency patterns in SRE: quantum error correction = redundancy, graceful degradation.
- SREs must support **automated** mitigation pipelines as quantum hardware matures.

# 3. Monitoring & Observability

- Hybrid systems need multi-layer observability: quantum state fidelity, classical pipeline metrics, data transformation checkpoints.
- Future SRE tools may need to capture quantum noise, qubit decoherence, and cross-domain latency.

#### 4. Training Infrastructure & Stability

- Over 200 training iterations with <2% variance shows stability—a key SRE metric.
- SREs supporting ML platforms (MLOps) need to ensure this level of repeatability, low drift, and performance under load.

#### 5. Scalability & Deployment

- Scalability limitations in quantum hardware parallel classic SRE concerns around horizontal scaling, failover, and load balancing.
- Deploying hybrid models might require special orchestration and containerization strategies—a new area for SRE ownership.

# Site Reliability Engineering Conference: Key Insights on Hybrid Quantum-Classical Systems

**Overview:** Hybrid Quantum-Classical Neural Networks (HQCNNs) integrate quantum computing with classical neural networks to address machine learning and optimization challenges, enabling advancements in computational power and efficiency.

#### **Relevance to SRE:**

- **Hybrid System Reliability:** SREs must manage classical-quantum handoffs, ensuring robust interfaces and fallback logic for uninterrupted operations.
- **Error Mitigation:** Quantum error correction parallels SRE resiliency patterns like redundancy and graceful degradation, requiring automated mitigation pipelines.
- **Monitoring & Observability:** SREs need multi-layer monitoring, focusing on quantum state fidelity, classical metrics, and quantum noise.
- **Scalability & Deployment:** Similar to classical SRE concerns, quantum hardware scalability needs special orchestration strategies for hybrid models.

### References

https://www.ibm.com/quantum/qiskit

Parameterized Quantum Circuits as Machine Learning Models <u>https://iopscience.iop.org/article/10.1088/2058-9565/ab4eb5</u> <u>https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.040504</u>

https://blog.google/technology/research/google-willow-quantum-chip/ https://www.aboutamazon.com/news/aws/quantum-computing-aws-ocelot-chip

Trustworthy Quantum Computing: Improving Reliability and Security (Duke University)

Reliability of IBM's Public Quantum Computers <u>https://tunl.duke.edu/events/trustworthy-quantum-computing-improving-</u> <u>reliability-and-security-quantum-computers https://par.nsf.gov/servlets/purl/10476833</u>

Practical usage example https://cns.utexas.edu/news/research/researchers-achieve-quantum-computing-milestonerealizing-certified-randomness

