
CLOUD-NATIVE DEFENSE-IN-
DEPTH SECURITY FOR MISSION-

CRITICAL SERVICES IN MANAGED
KUBERNETES

AGENDA

I N T R O D U C T I O N

M I S S I O N - C R I T I C A L S E R V I C E S

S E C U R I T Y C H A L L E N G E S I N M A N A G E D

K U B E R N E T E S

D E F E N S E - I N - D E P T H A R C H I T E C T U R E

S E C U R I N G C L O U D B O U N D A R Y

S E C U R I N G C L U S T E R B O U N D A R Y

S E C U R I N G C O N T A I N E R B O U N D A R Y

S E C U R I N G C O D E B O U N D A R Y

K E Y T A K E A W A Y S

INTRODUCTION

 Kubernetes is the foundation for modern cloud-
native infrastructure.

 Managed services: AKS, EKS, GKE simplify
operations but add security risks.

 Mission-critical services require strong, layered
security.

 This work proposes a defense-in-depth model
using the 4Cs.

MISSION-CRITICAL SERVICES

Definition: Software critical to business operations.

Examples:

• Finance: Payment processing, fraud detection

• Healthcare: EHR, medical monitoring

• Defense: Secure communication, analytics

• Supply Chain: Code signing, scanning, packaging

SECURITY CHALLENGES IN MANAGED KUBERNETES

• Insider threats from admins (Cloud,
Cluster, Tenant).

• Misconfigurations and weak
authentication.

• Malware injected into containers.
• Runtime exploits & privilege

escalation.
• Supply chain compromises.

DEFENSE-IN-DEPTH ARCHITECTURE

• Layered controls across Cloud, Cluster,
Container, Code (4Cs)

• Zero trust enforcement at all levels.

• Mitigates insider threats, supply chain
risks, runtime exploits.

• Built-in integrations with AKS, EKS, GKE.

SECURING CLOUD BOUNDARY

• Hub-Spoke Network Topology – Centralized hub VNet
manages traffic and security policies, while spoke VNets isolate
workloads for stronger segmentation and visibility.

• Private Clusters & Endpoints – Use private IP addresses
for control plane and registries, ensuring sensitive traffic stays
within the internal network and is not exposed to the internet.

• Restrict Inbound and Outbound Connectivity Using
Firewall Rules – Define strict rules for ingress and egress to
validate only authorized communication paths, blocking
unauthorized traffic.

• Protects Workloads from External Threats – Combined
measures minimize exposure, shrink the attack surface, and
provide strong boundaries against internet-based attacks.

W H AT S EC U R I T Y G A P S T I L L E X I S T S A F T E R T H E F I R S T C - C LO U D ?

• The Cloud layer focuses primarily on securing the external network boundary. It
provides protection from internet-based threats through firewalls, network
segmentation, and controlled connectivity.

• At this stage, all inbound and outbound communication is monitored and validated
to ensure that only trusted traffic flows into or out of the Kubernetes environment.

• However, this protection is limited to the network perimeter. While it successfully
reduces exposure from external actors, it does not address risks that exist inside the
environment.

• The next layers — Cluster, Container, and Code contain components that remain
vulnerable to internal threats, privilege misuse, and runtime exploitation.

SECURING CLUSTER BOUNDARY

• Private API Server & RBAC Integration – Use private endpoints to restrict exposure
and enforce strong authentication and role-based access controls for least-privilege access.

• Secure etcd with KMS Encryption – Encrypt sensitive cluster state and secrets at rest
using cloud Key Management Services to prevent unauthorized data access.

• Protect Kubelet and Node Access – Disable anonymous kubelet access, restrict kubelet
ports, and enforce network policies to harden node-level communication.

• Network Segmentation – Apply Kubernetes Network Policies or cloud-native firewalls to
control pod-to-pod, namespace, and external traffic, limiting lateral movement.

• OPA/Gatekeeper Admission Control – Enforce compliance and security rules (e.g.,
disallow privileged pods, enforce image signing) before workloads are admitted into the
cluster.

W H AT S EC U R I T Y G A P S T I L L E X I S T S A F T E R T H E S EC O N D C - C LU S T E R ?

• Covered key approaches to secure the managed Kubernetes cluster
and its internal components.

• Network (Cloud layer) and Cluster layer security controls are in place.

• Despite this, containers remain vulnerable to exploitation.

• Attackers may still target container breakouts, kernel flaws, or
malicious code injection.

SECURING CONTAINER BOUNDARY

• Pods at Risk of Breakout or Kernel Exploitation – Compromised containers can
escape to the host or exploit kernel vulnerabilities, threatening the entire cluster.

• Confidential VMs Protect Node-Level Workloads – Hardware-backed Trusted
Execution Environments (TEEs) encrypt memory and isolate worker nodes, shielding
workloads from host-level attacks.

• Confidential Containers Secure Sensitive Apps in TEEs – Containers run in
hardware enclaves, ensuring application code and in-memory data stay protected even
from compromised kernels or runtimes.

• Prevents Host or Admin Tampering – Confidential computing prevents even privileged
administrators or cloud operators from accessing or modifying sensitive workloads.

W H AT S EC U R I T Y G A P S T I L L E X I S T S A F T E R T H E T H I R D C - C O N TA I N E R ?

• Vulnerabilities from hypervisor, host/guest
agents, and peer pods/containers are
mitigated.

• The remaining risk lies in the code running
inside the container itself.

• Even with a Trusted Computing Base (TCB),
runtime code can introduce threats (e.g.,
downloaded code, spawning new processes).

• This gap is addressed by securing the fourth
“C” – Code.

SECURING CODE BOUNDARY
• Trusted Image Registries and Signing – Ensure only verified, cryptographically signed

container images from trusted registries are deployed, reducing supply chain risks.

• Use distroless images for Linux workloads - Distroless images are secured as it does
not have any bash/shell and package manager installed and it contains only required software for
application to run

• Immutable Containers – Containers cannot be modified after deployment; updates
require rebuilding and redeploying, preventing runtime tampering.

• Seccomp Limits Runtime Syscalls – System call filtering restricts what processes inside
containers can execute, blocking actions like creating new processes or mounting filesystems.

• Falco Detects Abnormal Runtime Behavior – Provides real-time monitoring of container
activity, alerting on suspicious actions such as privilege escalation or unexpected file access.

W H AT S EC U R I T Y G A P S T I L L E X I S T S A F T E R T H E FO U R T H C - C O D E ?

• Immutable Containers +
Seccomp strengthen the Code
layer - Prevent unauthorized
modifications, block risky system calls, and
restrict container process behavior.

• These measures fully secure the
fourth “C” (Code), closing the final
gap in the defense-in-depth model.

KEY TAKEAWAYS

• Protect Mission-Critical Services: Defense-in-depth secures essential workloads in managed

Kubernetes.

• Beyond Cloud-Provider Security: Regular cloud security (IAM, networking, perimeter controls) is

not enough against modern, multi-vector threats.

• Defense-in-Depth Advantage: Multi-layered protection (4Cs, zero trust, runtime monitoring,

confidential containers) addresses insider risks, supply chain threats, and runtime attacks.

• Resilient and Developer-Friendly: Strong security posture without reducing developer

productivity.

THANK YOU

