CLOUD-NATIVE DEFENSE-IN-
DEPTH SECURITY*FOR MISSION-
CRITICAL SERVICES IN MANAGED

KUBERNETES

AGENDA

INTRODUCTION
MISSION-CRITICAL SERVICES

SECURITY CHALLENGES IN MANAGED
KUBERNETES

DEFENSE-IN-DEPTH ARCHITECTURE
SECURING CLOUD BOUNDARY
SECURING CLUSTER BOUNDARY
SECURING CONTAINER BOUNDARY
SECURING CODE BOUNDARY

KEY TAKEAWAYS

INTRODUCTION

Kubernetes is the foundation for modern cloud-
native infrastructure.

Managed services: AKS, EKS, GKE simplify
operations but add security risks.

Mission-critical services require strong, layered
security.

This work proposes a defense-in-depth model
using the 4Cs.

MISSION-CRITICAL SERVICES

Definition: Software critical to business operations.
Examples:

* Finance: Payment processing, fraud detection

* Healthcare: EHR, medical monitoring

* Defense: Secure communication, analytics

* Supply Chain: Code signing, scanning, packaging

SECURITY CHALLENGES IN MANAGED KUBERNETES

Insider threats from admins (Cloud,
Cluster, Tenant).

Misconfigurations and weak
authentication.

Malware injected into containers.

Runtime exploits & privilege
escalation.

Supply chain compromises.

DEFENSE-IN-DEPTH ARCHITECTURE

Layered controls across Cloud, Cluster,
Container, Code (4Cs)

Zero trust enforcement at all levels.

Mitigates insider threats, supply chain
risks, runtime exploits.

Built-in integrations with AKS, EKS, GKE.

SECURING CLOUD BOUNDARY

Hub-Spoke Network Topology — Centralized hub VNet
manages traffic and security policies, while spoke VNets isolate
workloads for stronger segmentation and visibility.

Private Clusters & Endpoints — Use private IP addresses
for control plane and registries, ensuring sensitive traffic stays
within the internal network and is not exposed to the internet.
Restrict Inbound and Outbound Connectivity Using
Firewall Rules — Define strict rules for ingress and egress to
validate only authorized communication paths, blocking
unauthorized traffic.

Protects Workloads from External Threats — Combined
measures minimize exposure, shrink the attack surface, and
provide strong boundaries against internet-based attacks.

WHAT SECURITY GAP STILL EXISTS AFTER THE FIRST C - CLOUD?

The Cloud layer focuses primarily on securing the external network boundary. It
provides protection from internet-based threats through firewalls, network
segmentation, and controlled connectivity.

At this stage, all inbound and outbound communication is monitored and validated
to ensure that only trusted traffic flows into or out of the Kubernetes environment.

However, this protection is limited to the network perimeter. While it successfully

reduces exposure from external actors, it does not address risks that exist inside the
environment.

The next layers — Cluster, Container, and Code contain components that remain
vulnerable to internal threats, privilege misuse, and runtime exploitation.

SECURING CLUSTER BOUNDARY

Private API Server & RBAC Integration — Use private endpoints to restrict exposure
and enforce strong authentication and role-based access controls for least-privilege access.

Secure etcd with KMS Encryption — Encrypt sensitive cluster state and secrets at rest
using cloud Key Management Services to prevent unauthorized data access.

Protect Kubelet and Node Access — Disable anonymous kubelet access, restrict kubelet
ports, and enforce network policies to harden node-level communication.

Network Segmentation — Apply Kubernetes Network Policies or cloud-native firewalls to
control pod-to-pod, namespace, and external traffic, limiting lateral movement.

OPA/Gatekeeper Admission Control — Enforce compliance and security rules (e.g.,
dlisallow privileged pods, enforce image signing) before workloads are admitted into the
cluster.

WHAT SECURITY GAP STILL EXISTS AFTER THE SECOND C - CLUSTER?

Covered key approaches to secure the managed Kubernetes cluster
and its internal components.

Network (Cloud layer) and Cluster layer security controls are in place.
Despite this, containers remain vulnerable to exploitation.

Attackers may still target container breakouts, kernel flaws, or
malicious code injection.

SECURING CONTAINER BOUNDARY

Pods at Risk of Breakout or Kernel Exploitation — Compromised containers can
escape to the host or exploit kernel vulnerabilities, threatening the entire cluster.

Confidential VMs Protect Node-Level Workloads — Hardware-backed Trusted
Execution Environments (TEEs) encrypt memory and isolate worker nodes, shielding
workloads from host-level attacks.

Confidential Containers Secure Sensitive Apps in TEEs — Containers run in
hardware enclaves, ensuring application code and in-memory data stay protected even
from compromised kernels or runtimes.

Prevents Host or Admin Tampering — Confidential computing prevents even privileged
administrators or cloud operators from accessing or modifying sensitive workloads.

WHAT SECURITY GAP STILL EXISTS AFTER THE THIRD C - CONTAINER?

Vulnerabilities from hypervisor, host/guest
agents, and peer pods/containers are
mitigated.

The remaining risk lies in the code running
inside the container itself.

Even with a Trusted Computing Base (TCB),
runtime code can introduce threats (e.g.,
downloaded code, spawning new processes).

This gap is addressed by securing the fourth
“C” — Code.

SECURING CODE BOUNDARY

Trusted Image Registries and Signing — Ensure only verified, cryptographically signed
container images from trusted registries are deployed, reducing supply chain risks.

Use distroless images for Linux workloads - Distroless images are secured as it does
not have any bash/shell and package manager installed and it contains only required software for
application to run

Immutable Containers — Containers cannot be modified after deployment; updates
require rebuilding and redeploying, preventing runtime tampering.

Seccomp Limits Runtime Syscalls — System call filtering restricts what processes inside
containers can execute, blocking actions like creating new processes or mounting filesystems.

Falco Detects Abnormal Runtime Behavior — Provides real-time monitoring of container
activity, alerting on suspicious actions such as privilege escalation or unexpected file access.

WHAT SECURITY GAP STILL EXISTS AFTER THE FOURTH C - CODE?

Immutable Containers +
Seccomp strengthen the Code

layer - Prevent unauthorized
modifications, block risky system calls, and
restrict container process behavior.

These measures fully secure the
fourth “C” (Code), closing the final
gap in the defense-in-depth model.

KEY TAKEAWAYS

Protect Mission-Critical Services: Defense-in-depth secures essential workloads in managed

Kubernetes.

Beyond Cloud-Provider Security: Regular cloud security (IAM, networking, perimeter controls) is

not enough against modern, multi-vector threats.

Defense-in-Depth Advantage: Multi-layered protection (4Cs, zero trust, runtime monitoring,

confidential containers) addresses insider risks, supply chain threats, and runtime attacks.

Resilient and Developer-Friendly: Strong security posture without reducing developer

productivity.

THANK YOU

