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Issue 1. Idempotent id

Case:

Communication between two services with data creation in the
second one

Potential issues:

Duplicated data
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Issue 2. External request inside transaction

Case:

Creation/updating service db and data of an external service inside

Potential issues:

Exhausted db connection pool
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Issue 3. Requesting service at the same time

Case:

Multiple clients request a service at the same time

Potential issues:

Overloaded service leading to a temporary outage
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Issue 4. Lack of rate limiter

Case:

One or several clients use all the service resources. Meanwhile other
clients can’t use the service. It happens due to DDoS attack or bad design.

Potential issues:
Service can’t handle all the clients

Overloaded service leading to a temporary outage
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Issue 5. Lack of memory limiter

Case:

Client sends a big request

Potential issues:

Temporary outage (OOM)



nc (h *FooHandler) ServeHTTP(writer http.ResponseWriter, request xhttp.Request) {
(
msgPrefix =

user User

log.Printf( S | msgPrefix)

request.Method != http.
writer.WriteHeader (http.

:= io.ReadAll(request.Body)




> (h *FooHandler) ServeHTTP(writer http.ResponseWriter, request *http.Request) {
(
msgPrefix =

user User

log.Printf( msgPrefix)

request.Method != http.
writer.WriteHeader(http.

request.Body = http.MaxBytesReader(writer, request.Body

io.ReadAll(request.Body)




Issue 6. No retries

Case:

Request to an external service without retry in case of failure.

Potential issues:

High error rate of the service
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Issue 7. There are retries but no backoff

Case:

Request to an external service with retries but without backoff

Potential issues:
Overloaded external service

High error rate of the service
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Backoff strategies

- Linear
- Linear with jitter
- Exponential

- Exponential with jitter
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