System design: simple but
common mistakes

Kirill Parasotchenko

Issue 1. Idempotent id

Case:

Communication between two services with data creation in the
second one

Potential issues:

Duplicated data

Example: Advertisement service. User sending an

ad event

POST /impression

Service

POST /impression

{
"ad_id" : "id1"
I

4

External Ad
Service

d—

/]

POST /impression

Service

POST /impression
{

"ad_id" : "id1"

}

4

External Ad
Service

ad_counter: 2

POST /impression

<

{
"ad_id" : "id1",
"event_id" : "id2"

}

>

Service

POST /impression

<

{

"ad_id" : "id1",
"event_id" : "id2"
}

4

External Ad
Service

ad_counter : 1
(deduplication by

event id)

Issue 2. External request inside transaction

Case:

Creation/updating service db and data of an external service inside

Potential issues:

Exhausted db connection pool

Example. Advertisement service. Ad campaign
creation

R
et 7 Service
2 database
Y T e
;”/
POST
/create-ad-campaign Service
User >
Po
ST
\ , /cr.

External ad
service

et .7 Service
database
o2

@ POST

- /create-ad-campaign Service

\
\
:

q
& % /o,

Database

queue

POST
/create-ad-campaign

External ad

service

Q
)
% %

Issue 3. Requesting service at the same time

Case:

Multiple clients request a service at the same time

Potential issues:

Overloaded service leading to a temporary outage

Client app

get new plugin versions

Service

Database

~. =

Client app

Client app

Client app

Client app

Client app

o000

4

get new plugin versions

L

Service

Database

S

Issue 4. Lack of rate limiter

Case:

One or several clients use all the service resources. Meanwhile other
clients can’t use the service. It happens due to DDoS attack or bad design.

Potential issues:
Service can’t handle all the clients

Overloaded service leading to a temporary outage

al
Client app

ah
Client app

get new plugin versions

ab
> R . "
: Rate limiter Service
Client app

ab
Client app

ah
Client app

Database

Issue 5. Lack of memory limiter

Case:

Client sends a big request

Potential issues:

Temporary outage (OOM)

nc (h *FooHandler) ServeHTTP(writer http.ResponseWriter, request xhttp.Request) {
(
msgPrefix =

user User

log.Printf(S | msgPrefix)

request.Method != http.
writer.WriteHeader (http.

:= io.ReadAll(request.Body)

> (h *FooHandler) ServeHTTP(writer http.ResponseWriter, request *http.Request) {
(
msgPrefix =

user User

log.Printf(msgPrefix)

request.Method != http.
writer.WriteHeader(http.

request.Body = http.MaxBytesReader(writer, request.Body

io.ReadAll(request.Body)

Issue 6. No retries

Case:

Request to an external service without retry in case of failure.

Potential issues:

High error rate of the service

User

request

Service

request
N

A 4

7\

External

service

Issue 7. There are retries but no backoff

Case:

Request to an external service with retries but without backoff

Potential issues:
Overloaded external service

High error rate of the service

User

request

v

Service

request

N
N\

request
N

v

External

N

request

service

N
7\

v

Backoff strategies

- Linear
- Linear with jitter
- Exponential

- Exponential with jitter

.
.
.
.
.
o
.
.
.

PR N NN R R R BN

