Conf42 | Quantum Computing

Advancements in Quantum Warfare

- Komal Pandya

Table of contents

01

04

Introduction

05

Progress

02

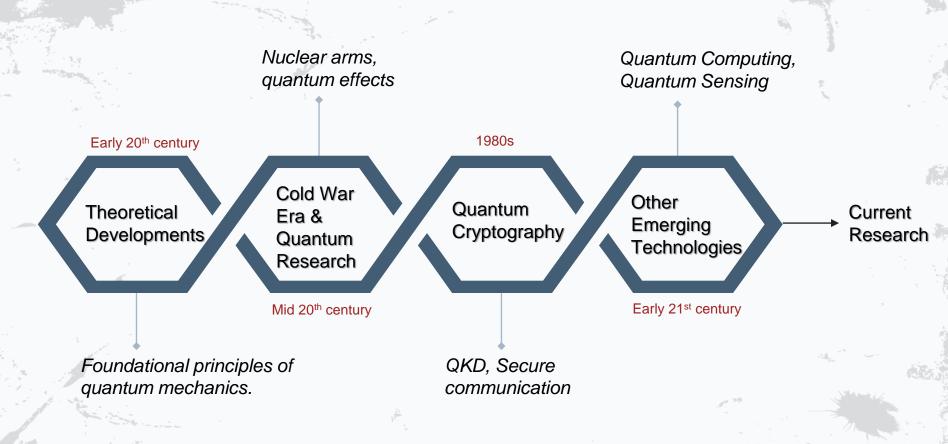
Challenges

Components

03

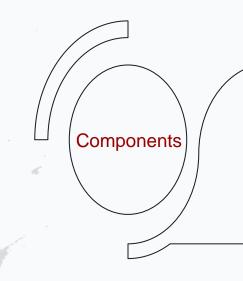
Mechanisms

06


Conclusion

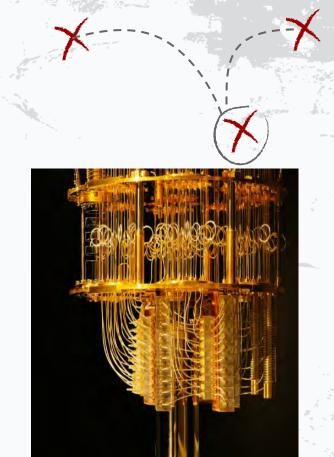
O1 Introduction

Quantum Warfare


- Leveraging quantum technologies to enhance military strategies, operations and weapons.
- Offer capabilities that surpass classical methods in encryption, data processing, and sensing.
- Can optimize logistics, enhance decision-making processes, and improve the performance of autonomous systems.

O2 Components

Main Components



- 1. Quantum Computing
- 2. Quantum Communication
- 3. Quantum Sensing

Quantum Computing

- Utilizing quantum mechanics principles to perform computation and process information.
- Superconducting, trapped ions, photonic, annealingbased, etc.
- Useful for solving complex problems, usually through
 subroutines and hybrid computation.
- The quantum computers can be availed through cloud services.

Quantum ML & Al

- The properties like superposition and parallelism have garnered significant interest, prompting efforts to adapt classical ML algorithms for quantum computing in the NISQ era.
- Promise advancements in semi-supervised approaches, such as reinforcement learning and Bayesian networks.
- Quantum-enhanced ML/AI enhance specific machine learning tasks like quantum sampling, linear algebra operations, and quantum neural networks.

Status: Research in progress

- Big data processing.
- Automated defense mechanisms.
- Combat simulations.

Major Challenges

- Error correction.
- Developing quantum algorithms.
- Processing classical data.
- Quantum memory.

Quantum Optimization

- Explores solving complex NP problems using optimization procedures like QAOA and QUBO.
- Quantum Approximate Optimization Algorithm (QAOA) finds approximate solutions to optimization problems.
- Quadratic Unconstrained Binary Optimization (QUBO) transforms an optimization problem into a form that can be tackled by quantum annealers.
- Quantum-inspired classical algorithms may provide performance improvements.

Status: Various proof-of -concept demonstrated

- Mission planning and scheduling.
- Resource allocation strategies.
- Efficient decision-making.
- Logistics and supply chain management.

Major Challenges

- Mapping the problems.
- Developing hybrid systems.
- Scalability.

Other Quantum Algorithms

- Quantum searching algorithms and quantum random walk mechanisms, offer significant speedup for unstructured data analysis.
- The HHL algorithm shows potential for super-polynomial speedup in solving linear equations.
- Quantum-phase estimation and variational techniques (like VQE) are dominant approaches for quantum simulations.

Status: Demonstrated effectiveness, other algorithms in progress.

- Improvements in quantum error correction and qubit coherence times.
- Increasingly used for specialized applications such as optimization problems, complex simulations, and machine learning

5-10 Years

- Quantum computers with hundreds to thousands of qubits could emerge.
- More robust errorcorrected quantum computers that can outperform classical systems.

10-20 Years

- Fully fault-tolerant quantum computers could become a reality.
- Practical, large-scale quantum computers with thousands of qubits.



Quantum Communication

- Transmitting quantum information using fibres or freespace channels with quantum communication protocols.
- Enable the exchange of cryptographic keys to provide theoretically secure communication channels.
- Developing quantum-safe cryptographic algorithms to secure data against potential threats from quantum computers.

Quantum Key Distribution

- Designed to securely distribute a secret key between parties for encrypting data over classical channels.
- It leverages the no-cloning theorem to ensure that any eavesdropper is detectable.
- Two main protocols BB84, E91.

Status: Commercially available, further experiments ongoing.

- Enhanced cybersecurity.
- Secure satellite-based communications.
- Protection of defense networks and command and control systems.

Major Challenges

- Scalability issues.
- Integration with current systems.
- Lack of specialized hardware.
- Limited range.
- Vulnerable to attack.

Quantum Network

- Designed to transmit qubits between spatially separated quantum processors.
- The structure of quantum networks comprise end nodes (quantum processors), communication lines, optical switches, and quantum repeaters.
- Enable secure direct communication and efficient redistribution of tasks based on individual quantum computer performance.
- Data sharing across networked quantum computers facilitates scalable quantum computing via distributed systems.

Status: Research in progress

Role

- Position verification techniques.
- Distributed yet powerful computing network.
- Resilient and Tamperproof networks.

Major Challenges

- Development and maintenance of components.
- Enhancing quantum processors.

Post – Quantum Cryptography

- Encompasses encryption techniques designed to withstand future quantum computer attacks.
- Most current symmetric cryptographic algorithms and hash functions are still secure against quantum attacks.
- New algorithms are being created in anticipation of Q-Day, when current cryptographic methods will become vulnerable to quantum computing.
- Can safeguard the integrity and authenticity of military data.

Status: Different approaches developed, Testing for implementation

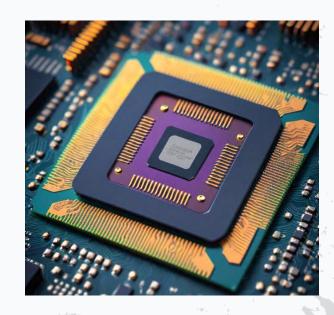
- Expansion of QKD networks in urban and metropolitan areas.
- Continued development of satellite-based quantum communication.

5-10 Years

- Integration of quantum communication protocols with classical internet infrastructure.
- Development of quantum repeaters.

10-20 Years

- Realization of a global quantum internet.
- Robust quantum repeaters and satellite constellations to maintain quantum entanglement.



03 Quantum Sensing/ Metrology

- Using quantum phenomena for measuring physical quantities like magnetic/electric fields, temperature, pressure, etc.
- Exploits the inherent weakness of quantum technology
 strong sensitivity to external disturbances.
- Offer sensitivity and precision in measuring, providing long-term stability and accuracy compared to conventional sensors.

Quantum Clocks

- Highly precise timekeeping devices, uses laser-cooled single ions in an electromagnetic trap.
- State-of-the-art chip-sized atomic clocks achieve an uncertainty of 2×10^{-12} , while quantum logic single-ion clocks have uncertainties as low as $\sim 9 \times 10^{-18}$.
- The higher precision of quantum clocks enables new types of measurements, can measure the difference in height between arbitrary points on Earth at an accuracy of one centimeter.

Status: Lab prototypes, Miniaturization in progress

- Precise positioning and navigation.
- Advancing missile guidance systems.
- Synchronizing multi-phase ops and attacks.
- Co-ordinating complex military manoeuvres.

Major Challenges

- Ensuring reliability and longevity.
- Making energy-efficient models.
- Addressing technical complexities.
- Miniaturization.

Quantum Radar

- Utilizes quantum features in both the radiation source and output detection to outperform classical radar systems.
- Counteract conventional radar jamming techniques.
- Properties with noise radars probability of detection and efficient spectrum sharing.
- Several protocols proposed, each having its own requirements, strength and limitation.

Status: Proof-of-concept, Preliminary experimental prototype.

- Stealth Detection.
- Electronic Warfare.
- Maritime Security.
- Space Situational Awareness.

Major Challenges

- Limited range and power.
- Dependence on other quantum services.
- Sensitivity to noise.

Quantum Imaging

- Enhance imaging capabilities beyond the limits of classical systems.
- Techniques in quantum imaging include quantum ghost imaging, SPAD arrays, quantum illumination, and sub-shot-noise imaging, etc.
- Can perform tasks such as behind-the-corner imaging, low-light level detection, and high-resolution 3D mapping.

Status: Prototypes, Testing for future use-cases

- Non-Line-of-Sight Imaging.
- High-resolution images with minimal light.
- Improved Signal-to-Noise Ratio for monitoring.
- 3D imaging for better mapping of terrains and structures.

Major Challenges

- Development costs.
- Environmental sensitivity.
- Real-time data processing.
- Security and reliability.

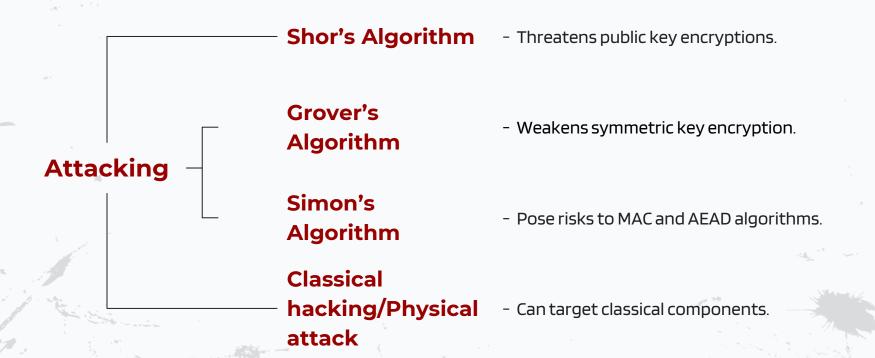
- Prototyping and testing quantum sensors in various environments.
- Deployments for precision navigation and resource exploration are anticipated.

5-10 Years

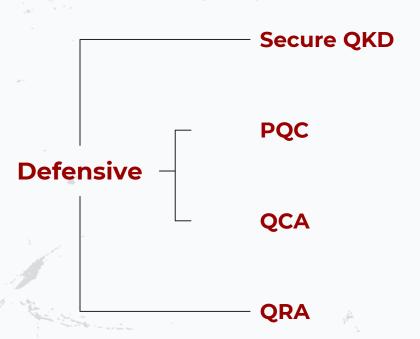
- Can enter the commercial market.
- More extensive use of quantum sensors in military applications.

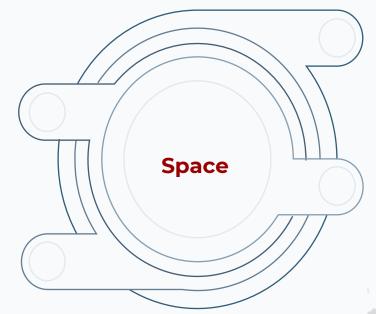
10-20 Years

- Can become affordable, standard equipment.
- Integration into spacebased/naval platforms with long-range capabilities.



03 Mechanisms



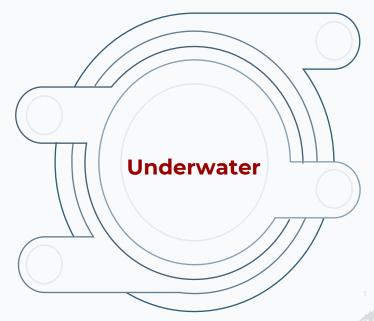

- A secure method for encryption key exchange.
- Can counter the risk of future decryption by quantum computer.
- Preparing existing infrastructure for quantum crypto-agility.

- Developing quantum-resilient algorithms.

Space Warfare

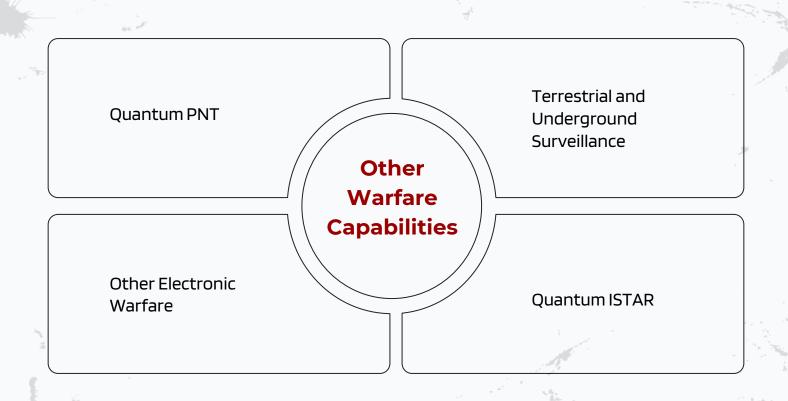
Satellite-Based Quantum Communication

Quantum Ghost Imaging for Surveillance


Quantum-Enhanced Satellite Detection

Anti-Satellite Warfare and Space Weaponization

Underwater Warfare


Underwater Mapping with Quantum Magnetometers and Gravimeters

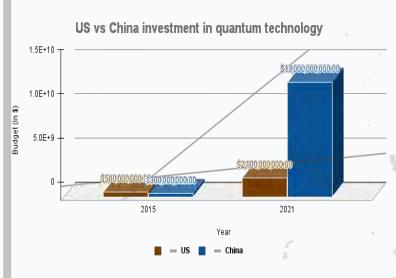
Quantum-Enhanced Sonar

Quantum Inertial Navigation and Magnetic Detection

Anti-Submarine Warfare Capabilities

04 Progress

Global Players

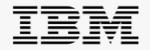

US and China: Frontrunners

US

- Three pillars model.
- Active research on quantum teleportation.
- Alliances with NATO, AUKUS.
- Led in quantum computing.

China

- PLA, defense companies.
- Demonstrated satellitebased QKD.
- Collaborating with Russia and other institutes.
 - Ahead in quantum communication.



Global Quantum Warfare Market

2022 ~ USD 134.66 million

2031 ~ USD 540.91 million

CAGR: 16.8%

05 Challenges

Challenges

Technical **BUN**

- **Practical Implementation**
- Integration
- Testing and Validation
- Data Handling

02

Policy-Making [

- **Ethical Boundaries**
- Legal Consequences
- **Global Security**

03

- Interoperability
- **Verification Protocols**
- Unification

04

Manpower (1)

- Training
- Dedicated curriculum
- Interdisciplinary expertise

Economical

- Financial Impact
- Sustainable development
- **Resource Allocation**

06 Conclusion

Conclusion

- Transformative shift in military capabilities.
- Currently, many quantum technologies are still in the experimental or developmental stages.
- Some areas have shown excellence, some others are promising, while some may raise doubts.
- The next few decades will be critical!!

References

- Quantum Warfare: Definitions, Overview and Challenges:
 https://indianstrategicknowledgeonline.com/web/2103.12548.pdf
- The US and China are in a quantum arms race that will transform warfare: https://www.technologyreview.com/2019/01/03/137969/us-china-quantum-arms-race/
- The Weaponization of Quantum Mechanics: Quantum Technology in Future Warfare:
 https://apps.dtic.mil/sti/pdfs/AD1083173.pdf
- Quantum Warfare Market: https://www.insightaceanalytic.com/report/quantum-warfare-market/2053

Thank You!

Komal Pandya

Research Scholar, Department of Computer Science and Engineering, Indian Institute of Technology Patna, India

komalsp98@gmail.com

https://www.linkedin.com/in/komal-pandya/