
Building Scalable Developer 
Platforms
Engineering Excellence Through 
Integrated Tooling and Infrastructure
By: Kommireddy Veera Venkata Subrahmanyam | Micron Technologies



The Current Challenge

40%
Engineering Time

Spent on infrastructure tasks instead of core 

product development

60%
Reduction

Possible decrease in deployment complexity 

with proper platform engineering

3x
Faster Delivery

Potential increase in feature delivery speed 

with Internal Developer Platforms (IDPs)

These statistics highlight the critical need for streamlined developer platforms that reduce infrastructure overhead and accelerate development 

cycles.



Key Challenges in Platform Engineering

Tool Sprawl & Fragmentation

Disconnected tools create silos and inefficiencies across the 

development lifecycle

Lack of Standardization

Inconsistent practices lead to quality issues and knowledge gaps

Manual Toil

Repetitive tasks consume valuable engineering resources

Cultural Resistance

Teams may resist adopting new platforms and workflows

Skill Gaps

Specialized knowledge required for modern infrastructure

Scaling Pressures

Growing teams and systems demand robust, flexible platforms



The Platform Engineering 
Imperative

Complexity of Modern 
Software

Microservices architectures

Multi-cloud deployments

Complex dependency management

Distributed systems challenges

Fragmented Developer 
Experience

Inconsistent workflows

Infrastructure toil

Lack of standardization

Cognitive overhead

These challenges create significant friction in the development process, reducing 

productivity and increasing time-to-market.



The Platform Engineering Solution

Internal Developer Platforms 
(IDPs)

Unified interfaces that abstract 

infrastructure complexity

Developer-First Approach

Designed with developer experience as the 

primary focus

Relentless Automation

Eliminate manual tasks through 

comprehensive automation

Clear APIs & Interfaces

Well-defined contracts between platform and applications

Metrics-Driven Success

Measure adoption, efficiency, and developer satisfaction



Core Components: Self-Service Infrastructure

On-demand provisioning replaces ticket-based model

Self-service infrastructure empowers developers to provision resources without 

waiting for operations teams, dramatically reducing bottlenecks.

Key Benefits:

Faster delivery cycles

Reduced wait times

Developer empowerment

Consistent environments

Standardized configurations



Core Components: Integrated 
Toolchain Automation

Single Source of Truth

Version control + configuration management ensures consistency 

across environments

CI/CD Pipelines

Automated build, test, and deployment with security & compliance 

built-in

Deployment Automation

Consistent, repeatable deployments across environments with rollback 

capabilities



Core Components: 
Observability & Monitoring 
Frameworks

Comprehensive Visibility

Logging: Centralized log 

aggregation

Metrics: Performance and business 

KPIs

Traces: Distributed transaction 

tracking

Advanced Capabilities

Anomaly detection

Interactive visualization

Proactive optimization

Automated alerting

Effective observability transforms reactive troubleshooting into proactive 

optimization, reducing MTTR and improving system reliability.



Industry Best Platform Engineering Tools

Self-Service Infrastructure

Kubernetes, Terraform, Pulumi, 

Crossplane

CI/CD

ArgoCD, Tekton, GitHub Actions, Jenkins X

Observability

Prometheus, Grafana, OpenTelemetry, 

Datadog

Service Management

Backstage, Humanitec, Qovery

Security

Vault, OPA, Snyk

These tools form the foundation of modern platform engineering stacks, with integration capabilities that enable seamless developer experiences.



Implementation Strategies: Developer-Centric APIs & 
Interfaces

API Design Principles

REST, GraphQL with consistent patterns

Clear documentation and examples

Versioning strategy

Error handling standards

Multiple Interface Options

Command-line tools for automation

Web portals for visualization

APIs for integration

UX-first design approach



Implementation Strategies: Establishing Adoption Metrics

Adoption Metrics
Active users

Time-to-first-deployment

Platform feature usage

Migration from legacy systems

Productivity Metrics

Deployment frequency

Mean Time to Recovery (MTTR)

DORA metrics

Lead time for changes

Satisfaction Metrics

Developer surveys

Net Promoter Score (NPS)

Support ticket volumes

Qualitative feedback

Measuring these metrics provides visibility into platform effectiveness and guides continuous improvement efforts.



Implementation Strategies: Creating Feedback Loops

Continuous feedback loops ensure the platform evolves to meet developer needs and organizational goals.

Telemetry

Collect usage data, error rates, and 

performance metrics

Structured Feedback

Regular surveys, interviews, and feedback 

sessions

Analysis

Identify patterns, pain points, and 

improvement opportunities

Roadmap Communication

Share plans and progress to build trust and 

alignment

Implementation

Deliver improvements based on feedback 

priorities



Real-World Success Story 1: E-
commerce Giant

Platform Initiatives

Standardized environments across 

development, testing, and 

production

Automated CI/CD pipelines with 

integrated security scanning

Centralized observability platform 

with custom dashboards

Impressive Results

3x increase in feature velocity

75% reduction in production bugs

60% fewer deployment failures

Improved developer satisfaction



Real-World Success Story 2: Financial Services Firm

Embedded Compliance

Automated security checks and policy-as-

code implementation

Self-Service Provisioning

Compliant environments available on-

demand

Transformative Results

50% reduced overhead, deployment time 

from weeks to days, 70% fewer incidents

By embedding compliance and security into their platform, this financial services firm achieved both regulatory compliance and development agility

4previously considered mutually exclusive goals.



Real-World Success Story 3: Technology Startup

Platform Approach

"Golden paths" with flexibility for innovation

Automated onboarding for new engineers

Scalable infrastructure templates

Growth Impact

Successfully scaled from 10 to 100 engineers while maintaining productivity and code 

quality. New engineers became productive in days rather than weeks.



Platform Engineering vs DevOps vs SRE

Aspect Platform Engineering DevOps SRE

Goal Build Internal Developer 

Platforms

Bridge Dev & Ops Ensure reliability

Focus Abstraction, automation, DX CI/CD pipelines, culture SLIs, SLOs, error budgets

Users Developers Dev + Ops teams Reliability engineers

Tools Backstage, ArgoCD, Terraform Jenkins, GitLab, Docker Prometheus, Grafana

Metrics Productivity, adoption MTTR, deploy frequency Uptime, latency

While these disciplines overlap, they have distinct focuses. Platform Engineering creates the foundation that enables both DevOps practices and SRE 

principles to thrive in an organization.



Emerging Trends & Future Directions

Multi-Cloud Orchestration

Seamless workload distribution and 

management across cloud providers, with 

abstracted infrastructure differences

AI-Powered Dev Tools

LLMs for code generation, intelligent 

automation, and predictive analytics to 

enhance developer productivity

Sustainable Operations

Balancing efficiency and reliability with 

environmental impact considerations in 

platform design



Building Your Platform Engineering Strategy

Assessment & Planning

Evaluate current developer workflows

Identify pain points and bottlenecks

Define platform vision and principles

Prioritize capabilities based on impact

Building the Right Team

Blend infrastructure, development, 

and UX skills

Foster product mindset for platform 

development

Establish clear ownership and 

responsibilities

Measuring & Iterating

Implement metrics from day one

Create tight feedback loops with users

Continuously evolve based on data and 

feedback

Celebrate and communicate wins

A successful platform engineering initiative requires thoughtful planning, the right team composition, and a commitment to continuous 

improvement.



Key Takeaways

1 Platform engineering is essential for modern 
software development

The complexity of today's software ecosystems demands 

abstraction and automation to maintain developer productivity.

2 Developer experience should be the north star

Successful platforms prioritize developer needs, creating 

intuitive interfaces that abstract complexity without limiting 

capability.

3 Measure what matters

Establish clear metrics for adoption, productivity, and 

satisfaction to guide platform evolution and demonstrate value.

4 Start small, iterate quickly

Begin with high-impact capabilities, gather feedback, and 

continuously improve rather than attempting to build everything 

at once.



"Platform engineering 
is not optional 4 it's 
the foundation for 

software excellence."
Thank You | Q&A

Kommireddy Veera Venkata Subrahmanyam | Micron Technologies


