Building Scalable Developer
Platforms

Engineering Excellence Through
Integrated Tooling and Infrastructure

—

/

pr—
—_—

By: Kommireddy Veera Venkata Subrahmanyam | Micron Technologies

“\.‘

| %

The Current Challenge
40% 60% 3X

Engineering Time Reduction Faster Delivery
Spent on infrastructure tasks instead of core Possible decrease in deployment complexity Potential increase in feature delivery speed
product development with proper platform engineering with Internal Developer Platforms (IDPs)

These statistics highlight the critical need for streamlined developer platforms that reduce infrastructure overhead and accelerate development

cycles.

Key Challenges in Platform Engineering

Tool Sprawl & Fragmentation Lack of Standardization

Disconnected tools create silos and inefficiencies across the Inconsistent practices lead to quality issues and knowledge gaps

development lifecycle

Manual Toil Cultural Resistance
Repetitive tasks consume valuable engineering resources Teams may resist adopting new platforms and workflows
Skill Gaps Scaling Pressures

Specialized knowledge required for modern infrastructure Growing teams and systems demand robust, flexible platforms

Cloudflow

The Platform Engineering

[mperative

Complexity of Modern Fragmented Developer
Software Experience

® Microservices architectures ® Inconsistent workflows

e Multi-cloud deployments ¢ Infrastructure toil

e Complex dependency management e Lack of standardization

e Distributed systems challenges e Cognitive overhead

These challenges create significant friction in the development process, reducing

productivity and increasing time-to-market.

The Platform Engineering Solution

Internal Developer Platforms Developer-First Approach Relentless Automation
(IDPS) Designed with developer experience as the Eliminate manual tasks through
Unified interfaces that abstract primary focus comprehensive automation

infrastructure complexity

©

Clear APIs & Interfaces Metrics-Driven Success

Well-defined contracts between platform and applications Measure adoption, efficiency, and developer satisfaction

Core Components: Self-Service Infrastructure

On-demand provisioning replaces ticket-based model

Self-service infrastructure empowers developers to provision resources without

waiting for operations teams, dramatically reducing bottlenecks.

Key Benefits:

e Faster delivery cycles

e Reduced wait times

e Developer empowerment
¢ Consistent environments

e Standardized configurations

7
@D

T

Core Components: Integrated
Toolchain Automation

Single Source of Truth

Version control + configuration management ensures consistency

across environments

CI/CD Pipelines

Automated build, test, and deployment with security & compliance
built-in

Deployment Automation

Consistent, repeatable deployments across environments with rollback
capabilities

Core Components:
Observability & Monitoring
Frameworks

i op conbooc -

Real-time monitoring Rogtiiatly Alleictioine] o1
Dajectad 312401 a _;":
S Comprehensive Visibility Advanced Capabilities
I': 8T8 koo &
' ¥ E e Logging: Centralized log e Anomaly detection
| | aggregation * Interactive visualization
EMiNseat Fyors i vl ® Metrics: Performance and business i b et
@D & e S Y — o ® Proactive optimization
- s
v i e ¢ e Automated alerting
c2ee gz0sa7 WS Rapsten . e Traces: Distributed transaction
s, e el tracking

Effective observability transforms reactive troubleshooting into proactive
optimization, reducing MTTR and improving system reliability.

Industry Best Platform Engineering Tools

Self-Service Infrastructure CI/CD Observability

Kubernetes, Terraform, Pulumi, ArgoCD, Tekton, GitHub Actions, Jenkins X Prometheus, Grafana, OpenTelemetry,
Crossplane Datadog

Service Management Security

Backstage, Humanitec, Qovery Vault, OPA, Snyk

These tools form the foundation of modern platform engineering stacks, with integration capabilities that enable seamless developer experiences.

Implementation Strategies: Developer-Centric APIs &
Interfaces

i codotion o s T D API Design Principles

e REST, GraphQL with consistent patterns
e (Clear documentation and examples
e \Versioning strategy

e Error handling standards

Multiple Interface Options

e Command-line tools for automation

Unlock seamless e Web portals for visualization
collaboration P .
J s for integration

e UX-first design approach

Coplestt Terms of Seevice of Tenvicy Privacy Polcy

Implementation Strategies: Establishing Adoption Metrics

Adoption Metrics
e Active users
e Time-to-first-deployment
e Platform feature usage

e Migration from legacy systems

Productivity Metrics

e Deployment frequency

e Mean Time to Recovery (MTTR)
e DORA metrics

e Lead time for changes

Satisfaction Metrics
e Developer surveys
e Net Promoter Score (NPS)
e Support ticket volumes

e Qualitative feedback

Measuring these metrics provides visibility into platform effectiveness and guides continuous improvement efforts.

Implementation Strategies: Creating Feedback Loops

Telemetry

Collect usage data, error rates, and

performance metrics

Implementation

Deliver improvements based on feedback

priorities

%

"B

Structured Feedback

Regular surveys, interviews, and feedback

sessions

Analysis

Identify patterns, pain points, and

improvement opportunities

Roadmap Communication

Share plans and progress to build trust and

alignment

Continuous feedback loops ensure the platform evolves to meet developer needs and organizational goals.

Real-World Success Story 1: E-
commerce Giant

Platform Initiatives Impressive Results

e Standardized environments across e 3xincrease in feature velocity

development, testing, and 75% reduction in production bugs

production

60% fewer deployment failures
e Automated CI/CD pipelines with

. .) Improved developer satisfaction
integrated security scanning

e Centralized observability platform

with custom dashboards

] eouee

Project Zenith -
Successful Deployment!

Real-World Success Story 2: Financial Services Firm

B -

Embedded Compliance Self-Service Provisioning Transformative Results
Automated security checks and policy-as- Compliant environments available on- 50% reduced overhead, deployment time
code implementation demand from weeks to days, 70% fewer incidents

By embedding compliance and security into their platform, this financial services firm achieved both regulatory compliance and development agility

—previously considered mutually exclusive goals.

Real-World Success Story 3: Technology Startup

Platform Approach

e "Golden paths" with flexibility for innovation
e Automated onboarding for new engineers

e Scalable infrastructure templates

Growth Impact

Successfully scaled from 10 to 100 engineers while maintaining productivity and code

quality. New engineers became productive in days rather than weeks.

Platform Engineering vs DevOps vs SRE

Aspect Platform Engineering DevOps SRE

Goal Build Internal Developer Bridge Dev & Ops Ensure reliability
Platforms

Focus Abstraction, automation, DX Cl/CD pipelines, culture SLls, SLOs, error budgets

Users Developers Dev + Ops teams Reliability engineers

Tools Backstage, ArgoCD, Terraform Jenkins, GitLab, Docker Prometheus, Grafana

Metrics Productivity, adoption MTTR, deploy frequency Uptime, latency

While these disciplines overlap, they have distinct focuses. Platform Engineering creates the foundation that enables both DevOps practices and SRE

principles to thrive in an organization.

Emerging Trends & Future Directions

Multi-Cloud Orchestration

Seamless workload distribution and
management across cloud providers, with

abstracted infrastructure differences

Al-Powered Dev Tools

LLMs for code generation, intelligent
automation, and predictive analytics to

enhance developer productivity

Pesstinoon Clunilacit Settings

== Sustainable
- Impact
e

B Muports

& Beingn

oatmaten

sonroe Efficiency- ‘ Wiaste Mot Wastn:

87%
Sustainable Operations

Balancing efficiency and reliability with
environmental impact considerations in

platform design

Building Your Platform Engineering Strategy

Assessment & Planning

Evaluate current developer workflows

Identify pain points and bottlenecks

Define platform vision and principles

Prioritize capabilities based on impact

Building the Right Team

Blend infrastructure, development,
and UX skills

Foster product mindset for platform

development

Establish clear ownership and

responsibilities

Measuring & Iterating
e Implement metrics from day one
e Create tight feedback loops with users

e Continuously evolve based on data and
feedback

e (Celebrate and communicate wins

A successful platform engineering initiative requires thoughtful planning, the right team composition, and a commitment to continuous

improvement.

Key Takeaways

1 Platform engineering is essential for modern
software development

The complexity of today's software ecosystems demands

abstraction and automation to maintain developer productivity.

3 Measure what matters

Establish clear metrics for adoption, productivity, and

satisfaction to guide platform evolution and demonstrate value.

Developer experience should be the north star

Successful platforms prioritize developer needs, creating
intuitive interfaces that abstract complexity without limiting

capability.

Start small, iterate quickly

Begin with high-impact capabilities, gather feedback, and
continuously improve rather than attempting to build everything

at once.

"Platform engineering
is not optional — it's
the foundation for
software excellence."

Thank You | Q&A

Kommireddy Veera Venkata Subrahmanyam | Micron Technologies

