
Threat 
Modeling in 
DevOps: A 
Practical Guide 
for Developers

Krishna Chaitanya Rudraraju



Why Threat 
Modeling in 

DevOps?

• DevOps prioritizes speed and agility, but 
security can feel like a blocker.

• Threat modeling integrates seamlessly 
into DevOps workflows to:

Identify vulnerabilities early.

Reduce remediation costs.

Enhance the overall security posture.



What is Threat 
Modeling?

A structured process to identify, 
evaluate, address potential threats and 
enable proactive security measures.

Core Questions:

• What are we building?

• What can go wrong?

• What are we going to do about it?

• Did we do a good job?



Key Benefits of Threat Modeling

• Early risk identification in 
SDLC.

• Seamless integration into 
CI/CD pipelines.

• Reduces vulnerabilities in 
production.

• Encourages collaboration 
between developers, 

operations, and security 
teams.



STRIDE Framework Overview

Spoofing: Fake identity or authentication.

Tampering: Data modification.

Repudiation: Denying actions.

Information Disclosure: Data leaks.

Denial of Service: Disrupting services.

Elevation of Privilege: Gaining unauthorized 
access.



Threat Modeling in a DevOps Workflow

Plan: Identify 
potential risks 
during feature 
planning.

1

Develop: 
Automate code 
analysis and 
dependency 
checks.

2

Build: Secure your 
CI/CD pipelines 
(e.g., signed 
artifacts).

3

Release: Perform 
penetration 
testing and verify 
controls.

4

Deploy: Monitor 
runtime 
environments for 
anomalies.

5

Operate: 
Continuously 
assess and 
respond to new 
threats.

6



Case Study: E-Commerce Application

• React Frontend, Node.js API, MongoDB, 
Kubernetes on Azure.

• CI/CD with GitHub Actions and Azure DevOps.

Application 
Overview:

• Spoofing: Fake tokens.

• Tampering: Altered Docker images.

• DoS: API flooding.

Threats 
Identified:

• OAuth2 for authentication.

• Signed Docker images.

• Rate limiting and auto-scaling in Kubernetes.

Mitigations 
Implemented:



Tools for Threat Modeling

Microsoft Threat Modeling 
Tool: Visualize and assess 
threats.

OWASP Threat Dragon: 
Open-source modeling 
tool.

Snyk & Checkmarx: 
Dependency and code 
analysis.

Azure Monitor & Sentinel: 
Real-time monitoring and 
threat detection.



Best Practices 
for Success

1. Collaborate early and often.

2. Automate wherever possible.

3. Regularly update models with 
new threats.

4. Train your team on security 
principles.

5. Monitor and iterate on security 
measures.



Call to Action

• Embrace threat modeling as a DevOps enabler, 
not a blocker.

• Start small, focus on critical areas, and grow 
your practices.

• Build secure, resilient applications without 
compromising speed.



Q&A

/krishnachaitanyarudraraju

Let’s discuss: How can threat modeling fit into your DevOps 
workflows ?

Contact:
Krishna Chaitanya Rudraraju
Senior Software Engineer - Microsoft
LinkedIn: /krishnachaitanyarudraraju

https://www.linkedin.com/in/krishnachaitanyarudraraju/

	Slide 1: Threat Modeling in DevOps: A Practical Guide for Developers
	Slide 2: Why Threat Modeling in DevOps?
	Slide 3: What is Threat Modeling?
	Slide 4: Key Benefits of Threat Modeling
	Slide 5: STRIDE Framework Overview
	Slide 6: Threat Modeling in a DevOps Workflow
	Slide 7: Case Study: E-Commerce Application
	Slide 8: Tools for Threat Modeling
	Slide 9: Best Practices for Success
	Slide 10: Call to Action
	Slide 11: Q&A

