
Observability in Privacy
Aware Infrastructure

Presenter -
Krishna Ganeriwal
Senior Software Engineer,
Meta Platforms Inc.

Enabling Trust and Compliance
in Modern Software Systems

AGENDA

● What are Privacy Aware Systems?

● What is Observability?

● Why Privacy Aware Systems need Observability?

● Observability for Privacy - Key Use Cases

● Challenges

● Architectural Patterns

● Case Study

● Benefits

● Future Directions

● Conclusion

Privacy Aware Systems
• Privacy-aware systems are designed to ensure that user data is

handled in a way that respects privacy regulations and user
expectations.

• These systems are part of a broader initiative known as Privacy
Aware Infrastructure, which aims to embed privacy deeply into the
technical fabric of the company's infrastructure. Here are some
key aspects of privacy-aware systems

I wonder
how to make

systems
safe?

I wish to
make

software
privacy
aware

Tough
problem to

scale

3

Observability
Observability is a critical concept in software development and
operations that enables teams to understand the internal state of a
system by examining its external outputs. In other words, it's about
being able to infer what's happening inside a system without
shipping additional code.

• Logs: Events in the system (e.g., a user accesses data)

• Metrics: Numeric time-series data (e.g., how often users opt out
of data-sharing)

• Traces: Request flow across systems (e.g., user click event
traversing services)

• Goal: Understand system state from the outside (even without
direct access to the internal code)

4

Why Privacy Infra Needs
Observability?

• Increasing global data regulations: GDPR, CCPA, DPDP

• Need for real-time visibility: into how user data is accessed and
shared.

• Proactive approach: to identifying violations rather than waiting for
audits

• Regulatory fines: Companies face penalties up to €20 million or 4%
of global turnover (GDPR) for non-compliance

5

KEY USE CASES

● DATA LINEAGE

● CONSENT PROPAGATION VERIFICATION

● PURPOSE LIMITATION ENFORCEMENT

● ANOMALY DETECTION

● POLICY DRIFT MONITORING

System Design
Challenges

• Volume: Billions of events; petabytes of lineage data

• Speed: Sub-second consent revocation

• Granularity: Per-user traceability

• Security: Observability systems must not leak PII

7

Architectural Patterns

● Event-driven Lineage: Using tools like Kafka to track data flows in
real-time.

● Consent-aware Tagging: Every piece of data carries consent
status across services.

● Embedded Policy Engines: Enforcing privacy policies directly
within the codebase.

● Cryptographic Audit Trails: Using Merkle trees to maintain
verifiable and immutable audit trails.Billions of events; petabytes of
lineage data

8

Case Study: Lineage at
Scale

● 1000+ data sources

● Real-time data graphing

● Consent-aware data enforcement

● Automated policy compliance checks

9

Benefits of Privacy Observability

● 40% faster audits

● Reduced regulatory fine risk

● Increased internal trust

● Safer ML and analytics usage

FUTURE WORK

• Can ML detect privacy issues in traces?

• Observability as Policy Enforcement

• Cross-org Observability Standards

Conclusion

• Observability is critical to privacy enforcement

• Build accountable, auditable systems

• Must be integrated at infra layer

12

 THANK YOU

