
Mapping the Minefield of Open 
Source Software Risks



Founder @ Cramhacks

Security Researcher @ Semgrep

Executive Consultant @ Bancsec

M.S. Comp Sci, Georgia Institute of Technology

CISSP, OSCP, GWAPT, GCIH, Sec+

https://www.linkedin.com/in/kylek42/

Kyle Kelly

https://www.linkedin.com/in/kylek42/


Agenda

Industry

● Dependencies

● Open Source Software 
(OSS)

● OSS Vulnerabilities

Easy Wins

● Manifest Files

● Semantic Versioning 
(SemVer)

● Transitive Risks

Prioritization

● Assessing Risk

● Software Composition 
Analysis (SCA)

● Reachability



Software Dependencies

In short, software dependencies are the packages that your projects depends on.

If you’ve ever used:

● pip install XYZ
● npm install XYZ
● gem install XYZ
● … you get the point

Then you’ve used a dependency! 



Open Source Software (OSS)

● >90% organizations use open-source software

● 52 million new open source projects on GitHub in 2022 alone

● 70-90% of an application’s stack comprises of OSS



Open Source Software (OSS) Vulnerabilities

● >28,000 CVEs in 2023 alone

● >215,000 Total GitHub 
Security Advisories



Open Source Software (OSS) Vulnerabilities

Ecosystem # of vulnerabilities

Maven (Java) 4,445

Npm (js/ts) 3,277

NuGet (C#) 558

Swift 33

Erlang (Elixir) 24

Pub (Dart/Flutter) 8



OSS Vulnerabilities



An uncomfortable prioritization exercise

● As you go through vulnerabilities, you might ask:

○ Why is it vulnerable? Is it exploitable?

○ Is the CVSS severity meaningful?

○ Do fixing these hurt developer velocity?



Semgrep Supply Chain (SSC)

● Semgrep Supply Chain is a dependency scanner that detects vulnerabilities in 
third-party packages

● In short, we use reachability analysis to help you hone in on high-quality 
findings, looking beyond just a package and its version

1000s of new 
vulnerabilities

100s impact your 
dependencies

10s result in actual 
vulnerable usage

Time saved (by reachability analysis)



Software Composition Analysis (SCA)

● Manifest: Identify used open-source components

● Lockfile: Snapshot of specific versions of dependencies

● Static analysis: Reviews the source code without execution

● Dynamic analysis: Observes the application during runtime



One of a few ways: Reachability

<= 12
Vulnerable 
packages

<= 932
Vulnerable 
packages

Looking at code-scanning 
reachability of vulnerability

Analyzing only the 
package version

Reachability analysis→ 

Finds if you’re using a vulnerable package, 
and if you are, checks to see if you’re also 
exhibiting a vulnerable behavior



Now What?

Remediation



Easy wins with semantic versioning (SemVer)

● Patch Upgrades (Z): Backward-compatible bug fixes (1.0.0 -> 1.0.1)

● Minor Upgrades (Y): Add features without breaking functionality (1.0.0 -> 1.1.0)

● Major Upgrades (X): Might come with breaking changes (1.0.0 -> 2.0.0)



Manifest File (Dependency Versions)

● Exact Version: "1.2.3"

● Tilde (~) Range: "~1.2.3"

● Caret (^) Range: "^1.2.3"

● Any Version: “*”



Easy wins with semantic versioning (SemVer)



Transitive Vulnerabilities

>90% of vulnerable dependencies are transitive

Your Project
Direct 

Dependency
A

Transitive 
Dependency 

A

Transitive 
Dependency 

B

Transitive 
Dependency 

…



Key Takeaways

● 🚀 Reachability can reduce false positives by up to 98% 🚀

● 😇 Build reproducibility & semantic versioning 😇

● 🌶 Transitive vulnerabilities can usually be ignored 🌶



Resources

● CramHacks: cramhacks.com

● Deep dive blog post which contains the reachability 

research: go.semgrep.dev/3KalPsI 

● Supply Chain product page: go.semgrep.dev/3lYRWnp

https://www.linkedin.com/in/kylek42/

https://www.cramhacks.com/
https://go.semgrep.dev/3KalPsI
https://go.semgrep.dev/3lYRWnp
https://www.linkedin.com/in/kylek42/

