Revolutionizing Fintech
with AWS SageMaker
AND
Goin ML

.; CIl = | | - s

.»;.4 o =N

epiangs v ‘

I
L

By: Likhit Mada

E IIIIIII | :

The Fintech Revolution: Market Overview

$1009.10B 40% 65%

Projected Market Development Boost Accuracy Increase
The global fintech market value by 2033, Average reduction in model development Improvement in fraud detection accuracy
representing massive growth opportunities time experienced by financial institutions when implementing sophisticated machine
for institutions embracing technological implementing AWS SageMaker for their ML learning models through AWS SageMaker.
innovation. workflows.

Financial institutions face increasing pressure to innovate while maintaining strict compliance standards. The adoption of advanced machine

learning solutions like AWS SageMaker represents a critical competitive advantage in this rapidly evolving marketplace.

a

Challenges in Fintech ML Implementation

Talent Bottlenecks 1

Critical shortage of ML specialists

2 Infrastructure Complexity

Costly specialized hardware requirements

Compliance Requirements 3

Navigating intricate regulatory frameworks

4 Data Security Concerns

Protecting highly sensitive financial data

Model Deployment Hurdles =

Bridging the gap from development to production

Financial institutions encounter formidable challenges when implementing machine learning solutions. Protecting sensitive customer financial data remains the
highest priority, while adhering to stringent regulatory frameworks like GDPR and PSD2 introduces additional layers of complexity. Organizations frequently struggle

to acquire and retain the specialized technical talent needed to design, train, and operationalize sophisticated ML models at enterprise scale.

AWS SageMaker directly addresses these pain points by offering a comprehensive, integrated platform that dramatically simplifies infrastructure management while

maintaining rigorous enterprise-grade security protocols and compliance standards essential for financial services.

Introducing AWS
SageMaker

Integrated ML Workflow Pre-built Algorithms

SageMaker provides a complete environment for building, Access production-ready algorithms for common fintech

training, and deploying machine learning models with use cases including fraud detection (XGBoost), credit

minimal infrastructure management. scoring (Linear Learner), and customer segmentation
(K-Means).

Framework Flexibility Automated Infrastructure

Support for popular ML frameworks including TensorFlow, Eliminates the complexity of provisioning and managing

PyTorch, and MXNet, allowing teams to work with familiar specialized ML infrastructure while ensuring optimal

tools while leveraging AWS infrastructure. performance and cost efficiency.

AWS SageMaker democratizes machine learning by removing infrastructure barriers and providing tooling that supports the
entire ML lifecycle. This empowers fintech organizations to focus on building sophisticated models rather than managing

complex infrastructure.

AWS Sagemaker Studio and Unified Studio

ke

Platform

A fully managed service that
enables data scientists and
developers to seamlessly build,
train, and deploy machine
learning models.With unified
Studio advanced project
management and collaboration

tools are also provided

ke

IDE

Unified web-based interface
that provides integrated
development environment (IDE)
through which you can perform
all machine learning
development steps and deploy
at scale too.

Including JupyterLab, Code
Editor based on Code — OSS
(Visual Studio Code Open

Source), and RStudio

e

Kernels and Infra

Development environments can
be spun up quickly with just a
few clicks, and they come
pre-configured with the
necessary machine learning
libraries and kernels. Users can
also select specific instance
types to optimize performance

and cost

ke

End 2 End FLow

The platform also offers
capabilities for model tuning,
monitoring, debugging,
experimenting and updating.
Check all the training jobs,
deployed endpoints, build and
maintain any pipelines unifying
the tools needed for machine
learning development into one
interface, making it easier for
data scientists and developers
to collaborate and manage their
machine learning (ML)

workflows.

AWS Sagemaker Studio Setup

Amazon SageMaker X

Amazon SageMaker

setting starte

SageMaker Studio Get tarted
The first fully integrated

40530t070037

development environment
(IDE) for machine learning.

¥ Admin configurations

How it works

&5 SageMaker Studio > Jupyterlab > JupyterLab ® Provide feedback Q}

.o (d

:i: Applications (5) PN S_

jupyter JUl pyte rLab | & private| E]
°
S m Jupyterlabe« 5GB « ml.t3.large
JubyterL-ab RStudio Canvas
- Status Instance® Image®
[R

m @ &) Run seace © Stopped ml.t3.medium \ SageMaker Distribution 1.7 v
Code Edi... Studio Cl... L3
& Home 88 Space Settings (New @ Learn about Spaces
£X Running instances A space is a named, self-contained, durable storage container (like a filesystem), to which an app can be attached.
£ Data v

Storage (GB) Lifecycle Configuration Attach custom EFS filesystem - optional
& Auto ML 5 No Script v None v
5 Enter a value from 5 to 100 GB. Please contact your

& Experiments administrator for larger storage volume.

Name Application Status Type Last modified Action

JupyterLab Z JupyterLab Running & Private 50 seconds ago '@ stop| YIS

LS

1results Results are cached C' Refresh Gotopage 1 v Page1of1 < >

AWS Sagemaker Studio Setup

)

T S —— Kaaaie BiKe Sharina vemana Dat:

¢ O n

iii

o » =

You are not currently in a Git repository. @ Launcher
To use Git, navigate to a local

Select Kernel
repository, initialize a repository here,

Select kernel for: “bikerental_data_preparation_rev3.ipynb* n

Python 3 (ipykemnel) v

or clone an existing repository.

tt
Start Preferred Kernel
Python 3 (ipykernel)
: , Use No Kernel
Python 3 Glue PySpark Glue Spark SparkMagic SparkMagic
(ipykernel) and Ray PySpark Spark No Kemel /
Start Other Kernel
Bl console Glue PySpark and Ray er', 't
Glue Spark
p SparkMagic PySpark
é [i+1s [is)s S S ~ * . 1t
Pytl?onBI Glu(:‘d PySpark Glue Spark SparkMa"?ic SpasrkMagic Use Kernel from Preferred Session 3
st iy sk e Use Kernel from Other Session
) File Edit View Run Kemel Git Tabs Settings Help R Feedback
m ¥ debuggeripynb ° P = %
B+ XTO O » m C » Code v B ©® st 2vcwuoncman--- — K=
> resulndarray
L [1]: 1 dimport numpy as np ’ :;m e
[2]: = np.ones((1,3))
o ; ; = :.:a::ufrindﬂ.l) e
! caustak » m ¢ ¥ T o
P result - x « y
e 3 retult =« 1 <cell line: 1> Ipykernel_4305/17719574.py:1
= 4 return result

[*]: 1 'c ~ my_func(a, b) \

P v
\ 23 BREAXPOINTS 1
1) 1c | =
v ® /tmp/ipykernel_4305/3221023857.py 3
[3:] 1 |
2
- debuggeripynd x | | sounce [fmlipemel 4505/3221023857
array([[1., 1., 1.]]) 1 |def my_func(x, y):

2 result = x « y
e 3 retult -« 1
4 return result

JumpStart

Deploy, fine-tune, and evaluate pre-trained models from the most popular model hubs.

providers 14 Mistral 78

by HuggingFace
8)(o R About Notebooks
0Q Meta stability ai A—
Task: Fine-Tune: Instruction Tuning v
HuggingFace Meta Al21 Stability Al .
Explore hundreds of popular and trending Explore popular and trending modets from Explore popular and trending models from Explore popular and trending models from -
models from HuggingFace. Meta including Llama, Code Llama, and AI21 Labs including Jurassic and more. Stability.ai including Stable Diffusion and 0 Thisisa ’Wﬂy M of the th notebook. : Open In JupyterLab ‘
more. more. e)
View 334 models > View 36 models > View 6 models > View 11 models > t}
. . L] .
SageMaker JumpStart - text generation instruction tuning
® cohere O PyTorch
This notebook demonstrates how to use the SageMaker Python SDK to fine-tune a JumpStart text generation model using an Instruction tuning dataset.
Cohere TensorFlow PyTorch Upstage []t import jsen
Explore popular and trending models from Explore popular and trending models from Explore popular and trending models from Explore popular and trending models from
Cohere including Command, Rerank, and TensorFlow for computer vision and NLP PyTorch for computer vision and NLP tasks Upstage including Solar mini chat model from Iw.l’. Jumpstart.estimator import J_Stlr(!l(hltor
more tasks. and more from sagesaker,juspstart.utils lsport get_juspstart_content_bucket
View/19 moceen' Visw 319 moows/> Vo 34 Joow: 2 Vi 2 moces Select your desired model ID. You can search for available models in the Bullt-In Algorithms with pre-trained Model Table,

[)1 wodel_id - "huggingface-lln-mistral-7b

if your selected model Is gated, you will need to set accept_eula to True to accept the model end-user license agreement (EULA),

n @LG o (l: “(."_“l' :
Lighton NCSoft LG CNS Jsina Al Prepare dataset
Explore popular and trending models from Explore popular and trending models from Explore popular and trending models from Explore popular and trending models from
LightOn including mini-instruct models. NCSOFT including VARCO LLM models. LG CNS including EXAONE Atelier and Jina Al including Jina Embeddings model
more. and more. The following cell identifies the S3 location of a dataset that can be used to fine-tune this text generation model. The dataset Is a subset of the SQUAD2.0 dataset that
contains questions posed by human annotators on a set of Wikipedia articles. In addition to questions with answers, SQuAD2.0 contains about 50k unanswerable
View 2 models > View 1 models > View 1 models > View 1 models >

questions, Such questions are plausible, but cannot be directly answered from articles' content. The curated dataset only uses unanswerable questions for demonstration

of fine-tuning. The license for this dataset Is Creative Commons Attribution-ShareAllke License (CC BY-SA 4.0), For details on the instruction tuning dataset format, see
VOYAGE Al aws B A1 Dataaat !
Amazon

[)¢ train_data_bucket - get_juspstart_content bucket()
train_data_key

Voyage Al
Evnlae nanidar and trandinn madale foam Evnlara nnnilar and trandinn madale foam train_data_location (train_data_bucket)/{train_data_key)

Sagemaker and AWS Integration

Amazon S3 1

Store your training data, notebooks, and model artifacts securely.

2 Amazon EC2

Train your models on GPU-powered instances or custom hardware configurations.

Amazon EMR 3

clusters for your data preparation workloads if you have large-scale, long-running,
or complex data processing requirements that involve massive amounts of dat

4 Amazon Lambda

AWS Lambda and SageMaker unlocks a powerful approach for event-driven ML model
development and deployment

AWS Glue 5

AWS Glue interactive sessions provides an on-demand, serverless Apache Spark
runtime environment that you can initialize in seconds on a dedicated Data Processing
Unit (DPU that you can enlist to collect, transform, clean, and prepare data for storage

in your data lakes and data pipelines Amazon |IAM

AWS SageMaker integrates with AWS Identity and Access Management (IAM) to
provide fine-grained access control over SageMaker resources and APls. IAM enables
you to manage permissions and securely control access to SageMaker resources
such as notebooks, training jobs, and endpoints.

AWS SageMaker integrates seamlessly with various other AWS services, simplifying the ML development, training, and deployment workflows.

https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-overview.html

Data preparation

ke

JupyterLab

e Interactive exploration and
analysis

e Flexible, user-friendly
interface

e Ideal for individual
exploration and
experimentation

e You have experience with
coding and prefer a flexible
approach.

e The data size is
manageable for individual
processing.

Data Wrangler

Visual interface for data
preparation

Pre-built functions for
common tasks
User-friendly for
non-coders

You prefer a visual
interface for data
preparation.

You have limited coding
experience or want to
avoid writing complex
code.

The data processing tasks
are relatively
straightforward.

AWS EMR:

Large-scale data
processing

Handles diverse data
formats

Advanced functionalities
for complex
transformations

You have large-scale data
processing needs.

You need to handle
complex data formats and
transformations.

Parallel processing is
crucial for faster data
preparation.

AWS Glue:

Automates data
preparation tasks
Serverless infrastructure
Integrates with other AWS
services

You need to automate data
preparation tasks.
Managing large-scale data
efficiently is a priority.
Serverless infrastructure
and pay-per-use pricing
are desired.

10

Model Development and training and Deployment

ke ke ke

No Code/ Low Code - Built in Script Mode External Model

Algorithms

e Require no/less coding the only
inputs you need to provide are
the data, hyperparameters, and
compute resources. This allows
you to run experiments more
quickly, with less overhead for
tracking results and code
changes.

e Library of foundational models
which are based on Gen Al
models like Llama, GPT-3,4,
Stable diffusion and also many
other ML Prebuilt algorithms
like XGBoost, CatBoost, and
LightGBM(Linear) esNet-18,
EfficientNet (Deep learning
models) k-means(Clustering
algorithms) are available

e If the algorithm required
for your model isn't
available as a built-in
option and you're adept at
coding your own solution,
you might want to use an
SageMaker supported
framework, often called
"script mode." In this
mode, you create your
custom code or scriptin a
code file using the
provided IDEs.

e |t provides popular
machine learning
frameworks such as
TensorFlow, PyTorch, and
Apache MXNet, making it
easier for users to develop
and deploy models.

The built-in algorithms and
supported frameworks
should cover most use
cases, but there are times
when you may need to use
an algorithm from a package
not included in any of the
supported frameworks

In such cases you can write
your own model externally
and create a custom docker
image with model code and
necessary dependencies.
Once your model is
containerized it can be
pushed to an online
repository and used
sagemaker for further steps

Training

Once your model is ready
you can train your model
against training data
configuring the training
instance, instance count and
tuning parameters. After the
model has been trained,
SageMaker will automatically
save the model artifacts to
the specified S3 bucket. The
output includes the model
file (e.g., a .tar.gz file
containing the trained model
parameters) and other output
files specified in the training
script.

Built in model

a I L K MRun @ C »

'us-east-1'

jockercontainer=sagemaker.amazon.amazon_estimator.get_image_uri(sagemakerSess.boto_region_name, 'li

‘get_image_uri' method will be deprecated in favor of 'ImageURIProvider' class in SageMaker Python SDK v2.

LogisticModel=sagemaker.estimator.Estimator(image_name=ECRdockercontainer,
role=role,
train_instance_count=1,

train_instance_type="ml.m4.x]
output_path=s3ModelOutput,
sagemaker_session=sagemakerSess,
base_job_name =

)

WARNING:root:Parameter image_name will be renamed to image_uri in SageMaker Python SDK v2.
LogisticModel.set_hyperparameters(predictor_type=' cl r',mini_batch_size=100)

LogisticModel.hyperparameters()

13]: {'predictor_type': 'binary_classifier', 'mini_batch_size': 100}

trainConfig=sagemaker.session.s3_input(s3_data=s3Train,content_type='text/csv')

WARNING: sagemaker: 's3_input' class will be renamed to 'TrainingInput' in SageMaker Python SDK v2.

LogisticModel.fit({'train': trainConfig})

from sagemaker import image_uris
container = image_uris.retrieve('xgboost', region='us-east-1', version='latest')

: |sess = sagemaker.Session() o]

xgb = sagemaker.estimator.Estimator(container,
role,
instance_count=1,
instance_type='ml.m4.xlarge’,
output_path="s3://{}/{}/output’.format(bucket, prefix),
sagemaker_session=sess)
xgb.set_hyperparameters(max_depth=5,
eta=0.2,
gamma=4,
min_child_weight=6,
subsample=0.8,

silent=0,
objective="'binary:logistic’,
num_round=100)
kgb. ({'train': s3_input_train, idation’: s3_input_validation})

12

Script Mode - Using Tensor Fl

'Jupytor train_model.py afew seconds ago

import numpy as np
import oS

import tensorflow as tf from sagemaker.tensorflow import TensorFlow

churn_estimator = TensorFlow(entry point='train model.py',
role=role,
output path=model artifact location,
Caamant o Sl . e code location=custom code upload location,
def estinator fn(run config, params): train_instance_count=l,
feature columns = [tf.feature column.numeric_column(INPUT TENSOR NAME, shape=[10])] train_instance type='ml.cd.xlarge’,
return tf.estimator.DNNClassifier(feature_columns=feature_columns, training_steps=100,
hidden units=[10,20,10], evaluation_steps=10)
n_classes=2,
config=run config)

INPUT TENSOR NAME = 'inputs

train_data_location = 's3://ml-data-tensor/datasets/’

serving input fn(params):
feature spec = {INPUT TENSOR NAME: tf.FixedLenFeature(dtype=tf.float32, shape=[10])}
return tf.estimator.export.build parsing serving input receiver fn(feature spec)() INFO:sagemaker:Creating training-job with name: sagemaker-tensorflow-2018-06-02-19-50-01

churn_estimator.fit(train_data location)

train input fn(training dir, params):
return _generate input fn(training dir, ‘'churn-train.

eval input fn(training dir, params):
return _generate input fn(training dir, ‘'churn-valid.

_generate input fn(training dir, training filename):

training set = tf.contrib.learn.datasets.base.load csv _without header(
filename=os.path.join(training dir, training filename),
target dtype=np.int,
features dtype=np.float32)

return tf.estimator.inputs.numpy input fn(
x={INPUT TENSOR NAME: np.array(training set.data)},
y=np.array(training set.target),
num_epochs=None,
shuffle=True) ()

Own model - Custom Image

B Decision_Tree
[Dockerfile

Custom container

sh

algorithm name-=custom-algorithm-sklearn
cd Algo Container

chmod +x Decision Tree train
chmod +x Decision Tree serve

fullname="${algorithm name):latest’

bucket sagemaker-tutorials-mlhubj

5. Setting up Algorithm Estimator

[9): param dict {
‘max leaf nodes":3,
"random state": O,

‘criterion”:"gini’
}
[*]: |estimator = sage.estimator.Estimator(
image,
role,
1,
“‘ml.c4.2xlarge",
output path="s3://{}/output”.format(sess.default bucket()),

sagemaker session-=sess,
hyperparameters-param dict,
train use spot instances=True, }
train max run=3600,
train max wait=7200

)

[26): estimator.fit(data location, logs=True)

sm-docker build . role Sagemaker build role repository

{fullname} \

BrV & FN

BTV & FE

Code files

Amazon SageMaker > Training jobs

Training jobs info | & Actions ¥ Create training job

Q ‘ G
Name v Creation time v Duration Job status ¥ S — Time
status left
® custom-algorithm-sklearn-2023-09-16-06-32- 9/16/2023, 12:02:24 . ®n i)
24-237 PM Progress
L
S3 model artifact

s3.//saggmaker-ap-south-1-179822996285 /output/custom-algorithm-
-2023-09-16-06-32-24-237 /output/model tar.gz [4

@

14

Own model - Custom Image

Job settings

Output data configuration

wirce

) container in ECR

v Tags - optional

Cancel

Deployment

After training your machine learning model, you can deploy it with Amazon Sagemaker to make predictions. Amazon
SageMaker provides several deployment options to suit different needs:

A
J\
4

<
LS
[N

Real-time Hosting Services

For continuous, real-time
inferences against the model. Best
in the cases where there is
continuous traffics The payload is
of smaller size. Deployed preferred

instance type

[24): sentences =

ltk.word_tokenize(sent)) fo

tokenized_sentences = -3
payload = {"instances” : tokenized_sentences}

response text classifier.predict(json.dumps(payload))

predictions json.loads (responge)
print(json.dumps(predictions, indent=2))

(
{
“prob":
0.9972800612449646
Is
“"label™: [
" __label__Company"
]
be
{
"prob": [
0.9960152506828308
1.
“label”: [
" _label EducationallInstitution”

Serverless Inference

Suitable for workloads that
experience periods of inactivity
interspersed with spikes in traffic
and can handle occasional startup
delays, opt for Serverless

Inference.

sentences]

Asynchronous Inference

For scenarios requiring the
processing of large payloads up to
1GB, extended processing times,
and near real-time response
speeds, consider using Amazon

SageMaker Asynchronous

huggingface model
env=hub,
role=role,
transformers version="
pytorch version
pYy version

HuggingFaceModel (

atch job huggingface model.transformer |
ice_count
type 2%
._path=upload path,

Batch Transform

If you need to make predictions on
an entire dataset, SageMaker Al's
batch transform feature is the
appropriate choice. See Batch
transform for inference with

Amazon SageMaker Al for further

SageMaker ML Lifecycle

Management

Model Development
Data Preparation 2 Design algorithms for precise financial predictions
Transform raw financial data into ML-ready assets 1
Training & Tuning
Maximize accuracy with automated optimizations
3
Monitoring =
Continuously evaluate performance and detect Deployment
anomalies 4 Seamlessly transition models to production

environments

AWS SageMaker delivers specialized tools for each critical phase of the machine learning lifecycle. Financial institutions benefit from streamlined data labeling with
SageMaker Ground Truth, comprehensive exploratory analysis through SageMaker Studio notebooks, and sophisticated hyperparameter optimization that eliminates

guesswork in model refinement.

In the fintech sector, where model precision directly translates to financial outcomes and risk management, SageMaker's advanced monitoring capabilities provide
essential safeguards. The platform employs real-time performance tracking in production environments, automatically identifying statistical deviations that could

compromise accuracy in mission-critical operations such as fraud prevention, credit risk assessment, and algorithmic trading decisions.

17

Additional Features

ke

Sagemaker Experiments

Building an ML model requires
numerous iterations of training to
fine-tune the algorithm, model
architecture, and parameters for
optimal prediction accuracy.

With Amazon SageMaker
Experiments, you can monitor the
inputs and outputs throughout
these training iterations,
enhancing the repeatability of
trials and facilitating team
collaboration.

Additionally, you can track
parameters, metrics, datasets, and
various other artifacts associated
with your model training jobs.

It provides a consolidated
interface that allows you to view
your ongoing training jobs,
collaborate with your team on
experiments, and directly deploy
models from an experiment.

W

Sagemaker Pipelines

Amazon SageMaker Pipelines is a fully
managed CI/CD service for machine
learning workflows, enabling
*automated, scalable, and reproducible
ML model development.

It allows data scientists and engineers
to define end-to-end ML
workflows—from data preprocessing
and training to model evaluation and
deployment—using a **directed acyclic
graph (DAG)* structure.

Pipelines integrate seamlessly with
SageMaker features like Processing
Jobs, Training Jobs, and Model
Registry, while supporting
*parameterization, conditional
execution, and reuse of pipeline steps*.

adoption.

e

SageMaker Model Monitor

Amazon SageMaker Model Monitor
oversees the quality of Al machine
learning models in production on
Amazon SageMaker.

It enables continuous monitoring
through real-time endpoints, regularly
scheduled batch transform jobs, or
on-schedule monitoring for

asynchronous batch transform jobs.

Model Monitor also comes with alert
functionalities to notify users of any
deviations in model quality, facilitating
early detection and enabling proactive

corrective measures

ke

Bedrock and Unified studio

Access Amazon Bedrock's
capabilities through SageMaker
Unified Studio to quickly build and
customize your generative Al
applications.

This intuitive interface lets you work
with high-performing foundation
models (FMs)Customize FMs to
match your requirements, data,
workflows, and responsible Al
standards.

Access a wide range of
high-performing FMs from leading Al
companies through the generative Al
playground. You can compare
different models and configurations

to evaluate their performance easily.
18

Using Go for Machine Learning Model Development

While Go might not be the first language that comes to mind for machine learning, it offers several advantages for specific tasks and situations:
Performance and Efficiency:
Go is a compiled language, resulting in fast execution times, critical for real-time applications and large datasets.
Go's garbage collection is efficient, minimizing pauses and ensuring consistent performance.
Go is lightweight and has a small memory footprint, making it suitable for deployment on resource-constrained environments like servers or edge devices.
Concurrency and Parallelism:
Go's built-in concurrency features (goroutines and channels) make it easy to parallelize tasks, significantly speeding up training and inference.
Go's concurrency model is lightweight and efficient, avoiding the complexities of thread management in other languages.
Integration and Interoperability:
Go integrates seamlessly with C code, allowing access to existing libraries and optimized implementations.

Go bindings are available for many popular ML libraries like TensorFlow, PyTorch, and scikit-learn. This enables leveraging existing code and algorithms within Go
projects.

Go's strong network capabilities facilitate communication with other services and APIs, crucial for distributed training and cloud deployments.
Go Lang Libraries for ML:
Gonum - Numerical computing library (like NumPy)

Gorgonia- is a modern, high-performance deep learning library specifically designed for the Go programming language, It provides a clean and expressive API for
building and training neural networks, making it a suitable choice for various ML tasks.

GolLearn - is a versatile and comprehensive machine learning library built for the Go programming language. It provides a wide range of algorithms and tools for various
tasks, making it a valuable resource for ML practitioners.

GoCV - GoCV is a powerful and versatile computer vision library specifically designed for the Go programming language. It provides a comprehensive set of tools and
algorithms for image and video processing, analysis, and manipulation.

Using Go with AWS Sagemaker

Here are a few scenarios on how Go can be used with AWS SageMaker:

1. Data Handling and Pre/Post Processing: Although the actual machine learning models might be implemented in other languages better suited for data
analysis (like Python), Go can be used for the tasks that involve data gathering, pre-processing, data storage, or post-processing results. Go's efficiency and
speed make it a great choice for tasks that require high performance such as processing large volumes of data or streaming data.

2. Invoking Endpoint Models: Once you have your model trained and deployed on AWS SageMaker as an endpoint, you can make predictions by invoking
this endpoint. You can write a Go application that sends requests to the SageMaker endpoint using the AWS SDK for Go or sagemaker-go. This is useful for
integrating model predictions into Go-based applications, such as web services or backend systems. Use the AWS SDK for Go to interact with SageMaker
resources programmatically. This SDK provides APls allowing you to manage SageMaker resources, automate training job deployments, setup endpoints,
and automate other workflow steps. For example, you can list training jobs, describe specific jobs, or manage lifecycle configurations directly from your Go
code

3. AWS Lambda: Deploy a Go-based Lambda function to build event driven ML lifecycle .

4. Microservices Architecture: If your infrastructure involves a microservices architecture, you can use Go to create lightweight, efficient microservices that
interact with AWS SageMaker. For instance, separate microservices could handle different aspects of the model training pipeline or could act as
intermediaries for pre-processing data before it is sent to SageMaker for training or inferences

5. Custom Algorithms in Container: If you need more control and want to use Go directly for developing algorithms, Use Go ML libraries like
[gonum](https://gonum.org/), [gorgonia]J(https://gorgonia.org/), or call Python models via os/exec. You can build ML models you can package your Go
code as a Docker container with Go runtime and dependencies. Since AWS SageMaker supports Docker containers, you can train and deploy your ML
model written in Go.

20

Key Fintech Use Cases

9,

Fraud Detection
Real-time transaction
monitoring using XGBoost
algorithms to identify
suspicious patterns and
prevent fraudulent activity
before losses occur.
SageMaker's ability to
process streaming data

enables immediate

response to potential fraud.

oll0

Credit Risk

Assessment
Advanced credit scoring

models using Linear
Learners and Neural
Networks to evaluate
borrower risk with greater
accuracy. These models

incorporate traditional and

alternative data sources for

comprehensive risk profiles.

O
-

Customer
Patelligeatioe engines
using K-Means clustering
and Deep Learning to
segment customers and
tailor financial products.
These models analyze
transaction history and
behavioral patterns to

predict customer needs.

Portfolio Management
Algorithmic trading
strategies and portfolio
optimization using
reinforcement learning and
time series forecasting.
SageMaker's distributed
training capabilities handle
the computational demands

of these complex models.

Security & Compliance

Capabilities

Data Encryption

SageMaker automatically encrypts
data at rest using AWS KMS and in
transit using TLS, ensuring financial
information remains protected
throughout the ML lifecycle. This
meets stringent requirements for
PCI-DSS and other financial data

protection standards.

VPC Integration

Training and inference containers run
within your Virtual Private Cloud,
ensuring models never process
sensitive financial data on the public
internet. This provides network
isolation for all ML workloads
handling customer financial

information.

IAM Integration

Fine-grained access controls through
AWS ldentity and Access
Management ensure only authorized
personnel can access specific
models and data. Role-based
permissions align with regulatory
requirements for data access

controls.

SageMaker's comprehensive security features address the unique compliance requirements of the financial industry,

including GDPR, PSD2, and internal risk management frameworks. The platform maintains detailed audit logs of all ML

activities, supporting the documentation requirements for model governance and regulatory examinations.

22

Case Study: Major Bank Fraud Detection

A Fortune 500 bank implemented AWS SageMaker to overhaul their fraud detection system, which was suffering from high false positive rates and
missed fraud attempts. By leveraging SageMaker's XGBoost implementation and real-time inference capabilities, they achieved dramatic improvements

across all key performance indicators.

iy B
0811428158 swagyn 1 L %
1.11000)) 150 -Peositn Bp] =g
oM
15i1)S

o 41 Phrocts

g.95- ;
Jo8:% Pt | S
;déftu'l("

joctd”
(2

it

)

(ot

VS 0 AV (SN VO Y P VN A N . X
O Ar e N o, W W, S0,

False Positives Reduced by =~ Detection Rate Improved to = 60% Faster Model 5x Faster Processing

69% 94% Development Speed

False positive rates dropped The bank increased fraud detection = Model development time was Alert processing time was reduced
dramatically from 12.4% to just success from 76% to 94 %, slashed from 45 days to just 18 from 1,200ms to just 250ms,

3.8%, meaning fewer legitimate capturing substantially more days, allowing for more frequent enabling the system to process
customer transactions were fraudulent transactions before updates and refinements to the over 10,000 transactions per
incorrectly flagged as suspicious. completion. fraud detection models. second during peak periods.

This performance enables the bank to block fraudulent transactions before they complete, significantly reducing fraud losses while improving customer

experience by reducing legitimate transaction declines.

23

Best Practices for SageMaker

Implementation

Start With Clear

Business Metrics
Define specific KPIs for your

ML initiative, such as fraud
detection rate or credit
approval accuracy. Establish
baseline measurements
before implementation to

properly evaluate success.

Begin With Pre-built
Algorithms

Leverage SageMaker's built-in
algorithms for common fintech
use cases before developing
custom models. Use
foundational models and
develop your own models for

better fine tuning and control

Implement CI/CD for

Model Development
Use AWS Lambda, SageMaker

Pipelines to create automated
workflows for model training,
evaluation, and deployment.
This ensures consistent
quality and enables rapid

iteration on financial models.

Monitor Model

Performance Vigilantly
Implement SageMaker Model

Monitor to continuously track
production model
performance. In financial
applications, model drift can
quickly impact business
results and potentially create

compliance issues.

Organizations should approach SageMaker implementation with a cross-functional team that includes data scientists, compliance

specialists, and business stakeholders. This ensures models meet both technical and regulatory requirements while driving

measurable business results.

24

Next Steps and

Resources

Assessment Phase

Evaluate your organization's ML maturity and identify high-value use
cases that align with business objectives. Look for opportunities where
existing processes have clear metrics that can be improved through

predictive analytics.

Production Implementation
Scale successful models to production using SageMaker's deployment
capabilities. Ensure proper monitoring and governance procedures are

in place to meet compliance requirements.

To get started with AWS SageMaker for fintech applications, explore these resources:

e SageMaker Example Notebooks for financial use cases
e AWS Training and Certification courses for ML in Finance

e Explore Golang ML libraries and implement models.

AWS Financial Services Industry Lens - AWS Well-Architected Framework

Proof of Concept
Implement a focused pilot project using AWS SageMaker to
demonstrate value. Fraud detection and credit scoring typically provide

the fastest ROI for financial institutions new to machine learning.

Organizational Transformation
Develop internal ML capabilities through training and hiring. Create a
center of excellence to share best practices and accelerate adoption

across the organization.

25

Thank you

