
Technical deep dive of Mobile
Payment Systems and its Rise

1

By: Likhit Mada

Global Adoption Trends
As mobile payment adoption accelerates globally, Site Reliability Engineering (SRE) teams maintain critical infrastructure that handles

billions of transactions daily with 99.99% uptime requirements.

45%
US Users

Apple Pay and Google Wallet penetration among smartphone

owners

55%
European Growth

Year-over-year increase in contactless transactions

8B
Monthly Transactions

UPI-facilitated payments in India's rapidly expanding market

300M
Active Users

India's UPI platform user base driving financial inclusion

SRE practices ensure these payment systems can scale elastically during usage spikes, maintain transaction integrity through distributed

systems reliability patterns, and provide real-time monitoring that prevents potential outages before they impact millions of users.

2

Who's Who in Mobile Payment Processing

Customer
 The individual making a purchase and initiating the payment using their mobile device.

Merchant
The business accepting the payment for goods or services. They interact with the customer and the payment processing system.

Acquirer
The financial institution that processes payments on behalf of the merchant. Provides the merchant with a POS terminal (physical or virtual).Receives

and forwards transaction data for authorization. Holds funds temporarily during settlement. Deposits funds into the merchant's account

Issuer
The financial institution that issued the customer's credit or debit card, which is linked to the mobile wallet used for payment. They verify customer

account details and balances, authorize transactions and debits customer account for approved payments.
Payment Network
 Acts as an intermediary between the acquirer and issuer, enabling communication and transaction routing for authorization and settlement.

Payment Gateway
A secure interface connecting the merchant's POS system (online or physical) to the payment processor (acquirer) and the payment network.

They integrate with various payment methods and network and also offer fraud detection and prevention tools

Token Service Provider
Secures mobile and online payments by replacing sensitive cardholder data with non-sensitive substitutes called tokens

Mobile Wallet Provider
Provides the digital wallet app that customers use to store their payment card information securely and conveniently make mobile payments.

3

Digital Wallets
Mobile wallets like Apple Pay and Google Pay have revolutionized how we make purchases.

Token Request:

At the core of mobile wallet security lies tokenization. When you add a credit/debit card to a

digital wallet.

The wallet provider (Apple or Google) requests a unique device-specific token from the card

network (Visa, Mastercard, etc.) or a Token Service Providers (TSPs)

Token Generation & Mapping:

The TSP generates a unique token. The TSP creates a secure mapping between the generated

token and the user's real card information. This mapping is stored in the Token Vault. This token,

a randomly generated number, acts as a substitute for your actual card number. This token is

linked to your device and specific card, meaning it can't be used on another device or for any

other purpose.

Token Provisioning:

The TSP securely delivers the generated token to the digital wallet app on the user's device.

Token Storage:

The digital wallet stores the received token securely on the device, often within a dedicated

secure element (SE) for hardware-level protection.
4

Payments Processing flow with Digital wallet
Customer Initiates Payment:
The customer chooses to pay using their digital wallet at a physical store or online checkout. They authenticate their identity on their device (e.g., fingerprint, face ID, PIN) to unlock their

digital wallet.

Token Service Provider generates secure token linked to the customer's actual card details as previously mentioned

Tokenization

Payment Data Transmission

in-store purchase, the customer taps or waves their device near the merchant's contactless POS terminal using Near Field Communication (NFC). The Token is transmitted. Online Checkout:

The customer selects their digital wallet at checkout,. The token is securely passed to the merchant's website.

Payment Gateway Processing:
The merchant's Payment Gateway receives the tokenized payment data.The gateway acts as a secure intermediary, verifying, encrypting the data and routing it to the appropriate payment

processor.

Payment Processor Routing
The payment processor receives the transaction data from the gateway.It uses the token information to identify the relevant card network and routes the transaction accordingly.

Card Network Authentication & Authorization
The card network (Visa, Mastercard, etc.) receives the transaction request.It uses the token to identify the issuer (the customer's bank).The card network requests authorization from the

issuer to ensure sufficient funds are available.

Issuer Approval/Decline
The issuer verifies the customer's account balance, transaction limits, and any security measures. If approved, the issuer places a hold on the funds and sends an authorization code

back through the network.

Transaction Confirmation
The authorization message travels back through the card network, payment processor, and gateway to the POS terminal or online checkout.The customer receives confirmation of the

successful payment.

Settlement & Funding
The payment gateway aggregates authorized transactions from the merchant throughout the day. The acquirer (merchant's bank) receives funds from the card network based on

settled transactions. The acquirer then deposits the funds into the merchant's account, minus any processing fees. 5

Other Mobile Payment Methods

The payment flow can vary depending on the mobile payment method used. Let's explore how it might change for other common

methods:

QR Code-Based Payments

The customer scans a QR code displayed by the merchant using their mobile payment app. The customer's app generates a

payment request with the transaction details and sends it to the payment provider (e.g., Alipay, WeChat Pay). The customer

authenticates within their app (PIN, biometrics), and the payment provider verifies their account and balance. Upon successful

authorization, the provider notifies both the customer and merchant of the payment. QR code-based payments often directly

debit/credit the customer's bank account or linked payment account within the mobile payment app, bypassing traditional card

networks in some cases.

 Bank Transfer Apps:

The customer selects the bank transfer app within a merchant's checkout or uses the app directly to send funds. The customer

enters the recipient's details (e.g., phone number, email address) linked to their bank account. Funds are directly transferred from

the customer's bank account to the recipient's account, often near real-time. The customer authenticates within their banking

app, and the transfer is authorized. These methods typically leverage existing bank transfer networks (e.g., ACH in the US, Faster

Payments in the UK), facilitating direct account-to-account transfers. These methods generally don't use traditional card details

or tokens for processing.

6

Handling Idempotency in Mobile Payments Processing
 Mobile payments introduce unique challenges for idempotency (ensuring an operation applied multiple times has the same effect

as if applied once).

● Network interruptions are common on mobile devices, potentially leading to duplicate requests or unclear transaction

statuses.

● Different operating systems, versions, and hardware configurations can introduce inconsistencies in how payments are

handled.

● Accidental double taps or attempts to retry failed transactions or client side multiple retries are common, increasing the risk

of duplicate requests.

Best Practices:

● Unique Idempotency Keys

● Robust Transaction Status Handling

● Deduplication Window

● State Management

● Retries and Exponential Backoff

● Monitoring and Alerting

● User Interface Design
7

Handling Idempotency in Mobile Payments Processing
 Idempotency Key

● The most common approach to handling idempotency is through the use of an idempotency key. An idempotency key is a

unique identifier that is generated by the client or sever and included with each payment request. The payment processing

system uses this key to recognize duplicate requests and ensure that they are processed only once.

● The generated idempotency key for each payment request is included in the request header or body.

● The server must be able to recognize the key and prevent processing the same transaction twice. This might involve Database

Constraints

● If the key is not present, the system processes the request and stores the key along with the result of the transaction.

● If the key is found, the system retrieves the stored result (in process or completed) and returns it without re-processing the

transaction.

Deduplication Window

● In addition to idempotency keys, a deduplication window can be implemented to define a time frame during which duplicate

transaction requests are checked. This window is typically configured based on the expected network latency and the

average time taken to complete a transaction. When a payment request is received, the system checks if an identical request

was processed within the deduplication window.

8

Handling Idempotency in Mobile Payments Processing
 State Management

● Effective state management is essential for maintaining idempotency. The payment processing system should be able to

accurately track the state of each transaction, even in the event of system failures or network issues.

● Ensure that all database operations related to a payment request are wrapped in a transaction. This helps in maintaining

atomicity and consistency.

● Store the state of each transaction in a persistent storage system that can survive system restarts and crashes.

● Use distributed caching systems like Redis to quickly check for duplicate requests across multiple servers.

Retries and Exponential Backoff

● To handle transient errors in payment processing, implementing retries with exponential backoff is recommended. This helps

in preventing duplicate transactions caused by repeated requests due to temporary failures.

● When a payment request fails due to a transient error, the client/or intermediate Microservice in the payments processing

flow retries the request after a delay.

● The delay increases exponentially with each retry attempt, reducing the load on the server and increasing the likelihood of

successful processing.

9

Handling Idempotency in Mobile Payments Processing
 User Interface Design

● Disable payment buttons after the first click to prevent duplicate requests.

● If a transaction fails due to temporary issues, provide a clear and safe way for users to retry, ensuring the same idempotency

key is used.

Robust Transaction Status Handling

● Provide immediate feedback to the user about the request status (e.g., "Processing..." or "Pending").

● Handle mobile payments asynchronously to accommodate network latency.

● Implement a mechanism for the app to poll the server for transaction status updates or use webhooks for push notifications.

10

Asynchronous Payments Processing
 Modern applications demand robust, user-friendly payment systems that cater to a variety of scenarios. Traditional synchronous

payment processing often falls short, leading to slow responses and potential points of failure. That's where the trio of Message

Queues, Callbacks, and Webhooks step in to enable efficient, robust, and asynchronous payment processing.

Let's break down each component and how they contribute:

1. Message Queues: The Unsung Heroes of Decoupling

What they are: Imagine them as digital post offices. They store messages (payment requests) sent by one part of your system

(e.g., your web server when a customer clicks "Pay Now") and deliver them to another part (your payment processing service)

reliably, even if the recipient is temporarily unavailable.

Benefits:

Decoupling: Separates payment processing logic from your main application flow, improving performance and fault

tolerance.

Scalability: Handles traffic spikes gracefully, preventing system overload during peak hours.

Retry mechanisms: Ensures payments are processed even if temporary errors occur with DLQs

Popular Message Queue Options: RabbitMQ ,Kafka, Amazon SQS

11

Asynchronous Payments Processing

12

Asynchronous Payments Processing
 Putting it all together - A Typical Flow:

● User initiates payment: The web server receives the request and sends a payment message to the message queue.
● Asynchronous Processing: The payment service receives the message, processes the payment with the provider, and sends a

callback with the result.
● Callback Handling: Your application receives the callback and updates the user's order status accordingly.
● Webhooks for Additional Events: Throughout the process, webhooks can provide real-time updates on other events like payment

authorization or capture, enabling you to fine-tune your application's behavior.

Key Considerations:

Security: Implement robust authentication and authorization mechanisms for both callbacks and webhooks to prevent

unauthorized access and data breaches.

Error Handling: Develop comprehensive error handling strategies for both payment processing and communication with callbacks

and webhooks.

Idempotency: Ensure that processing the same message multiple times (which can occur in distributed systems) doesn't lead to

unintended consequences, like charging the user twice.

Asynchronous payment processing using message queues, callbacks, and webhooks delivers a powerful and flexible solution for

modern applications. This approach allows for decoupled, scalable, and responsive payment systems, improving both user experience

and application reliability.

13

TAP TO PAY POS Feature
 “Tap to Pay” on iPhone for contactless payments, giving merchants large and small an easy and secure way to accept contactless credit

and debit cards, Apple Pay, and other digital wallets using just their iPhone.

Tap to Pay on iPhone works seamlessly with a partner-integrated iOS app — no additional hardware or payment terminal is required.

This is an example of not only making payments but also accepting payment from the merchant perspective.

The payments processing flow is similar when using your phone. There is an additional step of Payment Service Provider (PSP) merchant

app (e.g., Stripe) initializes a payment session using Apple’s Payment Framework APIs.

The merchant app sends the transaction to the payment processor API

Role of Apple’s Payment Framework APIs

Apple provides private APIs for payment processors to integrate with Tap to Pay:

• PKPaymentRequest – Configures payment parameters (merchant ID, supported networks).

• PKPaymentAuthorizationController – Manages the NFC transaction flow.

• Secure Element (SE) Communication – Handles EMV-level encryption.

• Tokenization Services – Converts raw card data into processor-specific tokens. 14

Enabling Technologies

NFC Technology
Enables tap-to-pay functionality between devices at close proximity. SRE teams

implement circuit breakers and rate limiting to prevent NFC terminal failures during

high-volume periods.

QR Codes
Scannable codes that facilitate payments without specialized hardware. SRE

practices ensure QR generation services maintain 99.99% availability with

redundant deployments across multiple regions.

Tokenization
Replaces sensitive data with unique identification symbols for secure transactions.

SRE monitoring tools track token verification latency to ensure sub-200ms

response times that don't impact user experience.

Cloud Infrastructure
Supports real-time processing and synchronization across payment networks. SRE

automation enables dynamic scaling during transaction spikes while maintaining

consistent performance and security boundaries.

15

Success Factors

User Experience
Intuitive interfaces driving adoption, supported by

SRE practices that ensure 99.99% availability and

sub-200ms response times for frictionless

payment flows

Retailer Partnerships
Expanding acceptance networks with

merchant-facing APIs protected by SRE circuit

breakers and automated failover systems to

prevent transaction failures

Banking Interoperability
Seamless integration with existing systems

through SRE-managed service meshes that provide

observability across complex financial transaction

paths

Mobile Penetration
Foundation for payment innovation supported by

SRE-designed resilient infrastructure that scales

elastically during peak usage periods across

diverse global markets

16

Security Innovations
Biometric Authentication
Advanced fingerprint, facial recognition, and voice verification technologies create unique

identity signatures that dramatically enhance account protection. SRE teams implement

automated canary deployments for biometric verification services, ensuring 99.99%

availability with sub-200ms response times.

End-to-End Encryption
Military-grade cryptographic protocols ensure complete data security throughout the

entire transaction journey, making interception virtually impossible. SRE practices include

secret rotation automation, encryption certificate monitoring, and chaos engineering tests

that verify security resilience during infrastructure failures.

AI Fraud Detection
Sophisticated machine learning algorithms continuously analyze transaction patterns to

identify and block suspicious activities before fraudulent charges occur. SRE observability

platforms provide real-time metrics on model performance, with automated rollbacks

when false positive rates exceed defined thresholds.

Multi-Factor Authentication
Layered security approach combines something you have, know, and are, creating multiple

verification barriers that significantly reduce unauthorized access risks. SRE teams

implement distributed rate limiting and circuit breakers to protect authentication services

during traffic spikes and maintain consistent security verification performance.

17

Regulatory Environment

Financial Regulations
Complex and fragmented compliance frameworks across global jurisdictions

create significant implementation hurdles for payment providers.

SRE teams implement automated compliance monitoring with real-time

dashboards that track regulatory requirements across markets, ensuring 99.9%

adherence to changing financial standards.

Data Protection
Stringent privacy legislation like GDPR and CCPA establishes strict parameters

for collecting, processing, and storing consumer financial data.

SRE practices include data residency automation, consent management

observability, and chaos testing of privacy controls to maintain regulatory

compliance while preserving system reliability.

Banking Standards
Established financial institutions are evolving regulatory frameworks to balance

innovation with consumer protection in the digital payments ecosystem.

SRE-designed service level objectives align technical performance with

regulatory requirements, providing measurable reliability metrics that satisfy

both banking standards and user expectations.

Cross-Border Rules
Intricate international transaction regulations and currency controls

significantly impact seamless global payment operations and market expansion.

SRE teams deploy region-specific infrastructure with automated regulatory

checkpoints and edge computing capabilities that maintain compliance across

diverse international jurisdictions.

18

Technical Challenges
Infrastructure Gaps
Rural and developing regions face persistent connectivity challenges with unreliable or non-existent internet access, creating digital

payment deserts. SRE teams implement edge caching, offline transaction queuing, and progressive enhancement strategies to maintain

99.5% service availability even in areas with intermittent connectivity.

Device Limitations
Budget and legacy smartphones lack advanced processors and secure elements necessary for implementing robust encryption and

authentication protocols. SRE practices include resource-aware degradation paths, lightweight cryptographic alternatives, and

client-capability detection to ensure consistent service reliability across diverse device ecosystems.

Interoperability Issues
Proprietary payment ecosystems create fragmented user experiences, forcing consumers to juggle multiple apps and limiting

merchant adoption rates. SRE teams develop unified monitoring dashboards and implement service mesh architecture with

standardized reliability metrics to identify interoperability failures before they impact end-users.

Backend Integration
Decades-old banking infrastructure built on COBOL and batch processing struggles to interface with modern API-driven,

real-time payment protocols. SRE engineers deploy resilient integration layers with circuit breakers, automated retry mechanisms,

and comprehensive observability tooling to maintain 99.99% transaction reliability despite legacy system constraints.

19

Cultural Barriers

Cash Preference

Deeply rooted cultural traditions and historical

practices foster strong emotional attachments to

physical currency in many societies. This

psychological connection creates significant

resistance to adopting digital payment

alternatives, even when they offer substantial

practical benefits.

Trust Issues

Lingering concerns about financial privacy,

transaction security, and institutional reliability

significantly impact adoption rates. Building user

confidence requires sustained effort and

transparency, particularly in societies with

historical banking instability or currency

devaluations.

Digital Literacy

Significant technological competency gaps

among diverse demographic groups create

substantial adoption barriers. Educational

disparities and limited exposure to digital

interfaces disproportionately affect elderly

populations and underserved communities,

slowing integration into the mainstream payment

ecosystem.

20

Cybersecurity Risks

Malware Threats
Sophisticated financial trojans specifically engineered to infiltrate mobile payment applications,

siphoning authentication credentials and enabling real-time transaction hijacking without

detection.

Man-in-the-Middle Attacks
Advanced threat actors exploit encryption vulnerabilities to position themselves between users

and payment servers, intercepting and potentially altering transaction data in transit.

Social Engineering
Elaborately crafted phishing campaigns leverage psychological manipulation and counterfeit

interfaces to extract sensitive financial credentials from unsuspecting users.

Public Wi-Fi Vulnerabilities
Unencrypted or poorly secured wireless networks create critical exposure points where payment

data packets can be captured and decoded using readily available interception tools.

21

Future Trends
Cryptocurrency Integration

Major payment platforms will

incorporate digital currencies. This

trend bridges traditional finance

with blockchain innovations.

• Direct crypto-to-fiat

conversions
• Stablecoin payment options

Invisible Payments

Frictionless transactions will

eliminate checkout processes

entirely. Systems will automatically

identify users and process

payments.

• IoT-enabled transactions

• Ambient commerce solutions

Super Apps

All-in-one platforms will combine

payments with broader services.

These ecosystems will centralize

financial activities with other

functions.

• Integrated lifestyle services

• Financial management tools

22

SRE in Payment Processing and Mobile Payments
Site Reliability Engineering (SRE) plays a critical role in modern payment systems, where reliability, security, and performance are
non-negotiable requirements. In payments processing and mobile payments, SRE teams bridge the gap between development and
operations while ensuring these financial systems meet stringent availability, latency, and compliance requirements.
● Site Reliability Engineering teams implement comprehensive monitoring systems that detect anomalous payment patterns and

transaction velocity changes, maintaining 99.99% protection rate through automated threat response protocols and real-time
security posture visualization.

● Site Reliability Engineering practices will reshape payment infrastructure resilience through automated error budgeting and chaos
engineering like Self-healing payment networks and Predictive outage prevention

● Ensuring data protection and compliance with regulations (such as PCI DSS for payment systems) by implementing strong
encryption, access controls, intrusion detection systems, and regular security audits.

● Define clear SLOs and SLIs specific to mobile payments, such as transaction success rates, latency of payment processing, and
system uptime. These metrics help in measuring and maintaining the reliability of the services.

● Predicting traffic patterns and scaling infrastructure accordingly is crucial to prevent outages during peak demand. SREs utilize
historical data and forecasting techniques for efficient resource allocation during peak loads during events like Black Friday or
holiday seasons

● Site Reliability Engineers implement culturally-responsive monitoring systems and localized reliability metrics to address adoption
resistance. SRE teams deploy progressive user experience patterns, simplified authentication flows, and visual interface
alternatives that respect cultural preferences while maintaining 99.9% service reliability across demographically diverse user
populations.

 Thankyou

