
Prompt Engineering for  
Test Automation:

Enhancing AI-Driven Quality

Assurance

@ludovicobesana

� Senior Test Engineer�
� SheTech Ambassado�
� Grafana Champio�
� Startups Co-Founde�
� Open Source Contributo�
� Some passions: , ,

Who I am?

Why This Talk?

Solve Real QA
Challenges

Gain Practical,  
Hands-On Skills

Stay Ahead with  
AI-Driven QA

@ludovicobesana

WHAT IS

PROMPT ENGINEERING?

@ludovicobesana

Prompt Engineering
Definition: Designing precise, contextual inputs to guide  
AI models toward specific outputs. 

Purpose in QA: Enables the creation of test cases that  
simulate user actions, handle edge cases, and validate outputs.

@ludovicobesana

Before Starting I
Clear Success Criteria:

Define what success looks like for your specific use case. Establish  
measurable goals and outcomes that the model's responses should meet.

Evaluation Methods:

Set up ways to test prompt performance empirically against your success  
criteria. This ensures that you can track improvements and identify any gaps.

@ludovicobesana

Before Starting II
First Draft Prompt: 
Begin with an initial prompt that you’ll improve through iterations.  
If you don’t have one yet, consider using a prompt generator tool, such  
as the one available in the Anthropic Console.

@ludovicobesana

docs.anthropic.com/en/docs/prompt-engineering

@ludovicobesana

Example

@ludovicobesana

@ludovicobesana

@ludovicobesana

Challenges in Traditional TA

Limited
adaptability

High manual  
effort

Stability issues

in CI/CD

@ludovicobesana

Key Techniques in Prompt Engineering
� Zero-Shot Prompting: Directly generate answers without examples to  

test adaptability.�
� Few-Shot Prompting: Provide a few examples to guide the model,  

improving response accuracy for specific tasks.�
� Chain-of-Thought Prompting: Break down complex tasks into  

logical, step-by-step instructions to improve clarity and  
ensure accurate outputs.

@ludovicobesana

Moving Beyond Manual Prompt Eng.
Trial-and-Error Limitation: Manual prompts are often inconsistent. 

Structured Optimization with DSPy: Data-driven frameworks improve reliability.

@ludovicobesana

How can we efficiently manage and track

the performance of different prompts in

a dynamic QA environment?

@ludovicobesana

@ludovicobesana

Using PromptLayer
Centralized Prompt Management: Organize and version prompts in one  
platform, allowing easy tracking and updates. 

Performance Analytics: Log and analyze prompt effectiveness to see  
which versions perform best across different testing scenarios. 

Optimization for QA: Identify high-performing prompts and quickly apply  
updates to improve consistency across tests.

@ludovicobesana

@ludovicobesana

@ludovicobesana

Building CustomGPT for Each Project
� Customize GPT with user stories, technical details�

� Helps AI provide project-specific responses.

@ludovicobesana

Using Documentations for CustomGPT
� Integrate Project-Specific Documentation: Embed APIs, libraries, and technical  

references directly into CustomGPT for contextualized responses�
� Enhanced Accuracy: Provides AI with a clearer understanding of  

project-specific elements, resulting in more relevant and precise outputs�
� Code-Driven Prompts: Leverage documentation to generate  

prompts that align with best practices and technical standards  
for each project.

@ludovicobesana

@ludovicobesana

@ludovicobesana

Agents vs. Copy-Pasting Prompt Results
Adaptability: Agents provide real-time responses and can adjust to new data,  
making them more flexible in dynamic scenarios.

External System Interaction: Agents can engage with APIs, databases,  
and other external systems, enabling them to perform actions beyond  
simple text outputs.

Enhanced Accuracy and Context Awareness: Agents can respond with  
greater precision, pulling context from live data or system states.

@ludovicobesana

Understanding Knowledge Memory
� Stores past interactions for future recall�

� Useful for complex, sequential tests.

@ludovicobesana

What is Prompt Tuning?
� Optimizes prompt structure, not the model�

� Benefits intricate scenarios with dynamic needs.

@ludovicobesana

Best Prompting Techniques
� Few-Shot Learning: Use examples for nuanced tasks�
� Chain of Thought: Helps AI explain its reasoning�
� ReAct: Dynamic responses based on observations.

@ludovicobesana

Design Phase
� Automatizability Scoring: Rate test cases  

for automation potential�

� User Personas Generation: Tailor prompts for  
diverse user scenarios.

@ludovicobesana

Implementation Phase
� XPath Name Suggester: Helps identify UI elements�

� Data-Driven Test Generation: Generate diverse test data dynamically�

� Automated Code Generation: Leverage tools like Auto Playwright to  
generate test scripts directly from high-level descriptions, streamlining  
the scripting process and ensuring consistency.

@ludovicobesana

Reporting Phase
� Failure Pattern Detector: Identifies common issues�

� Severity-Based Reporting: Prioritizes critical issues.

@ludovicobesana

Reading Reports Phase
� Non-Technical Summaries: Translates results for non-technical  

stakeholders�

� Test Impact Analysis on New Features: Suggests testing focus  
for new features.

@ludovicobesana

Prompt Engineering
Transforms QA

Effective Tools and
Techniques Exist

Cost Efficiency in  
QA Processes

3 Take Aways

@ludovicobesana

Experiment with Prompt

Engineering in your

testing workflows!

@ludovicobesana

@ludovicobesana

@ludovicobesana

Thank you

@ludovicobesana

Meet Ludovico

@ludovicobesana

