
IoT Data Warehousing with 
Snowflake Feature Stores: A 

Comprehensive Cost Reduction 
Strategy

By: Manmohan Alla          
Conf42 Internet of Things (IoT) 2025



The IoT Data Explosion
The proliferation of Internet of Things devices has fundamentally transformed 

organizational data landscapes. Manufacturing facilities now deploy thousands of sensors 

monitoring equipment health in real-time. Smart cities implement extensive environmental 

monitoring networks. Connected vehicle fleets generate continuous telemetry across 

diverse geographies.

Traditional data infrastructure, designed for batch processing and structured enterprise 

data, struggles with IoT workloads. The challenge extends beyond volume to encompass 

continuous streaming patterns, high-dimensional sensor diversity, temporal dependencies 

critical for predictions, and real-time feature computation at massive scale.



Scale and Velocity: The Core Challenge

1

Data Points per Hour
Modern manufacturing facilities generate 

millions of sensor readings hourly from 

diverse equipment

2

Continuous Streams
IoT devices produce data continuously 

without pause, requiring always-on 

ingestion infrastructure

3

Device Types
Heterogeneous sensors with varying 

sampling rates, precision levels, and data 

formats

Smart grid deployments can encompass millions of meters reporting consumption patterns, voltage levels, and quality metrics at second-level 

intervals. Connected vehicle fleets generate telemetry capturing location, speed, engine parameters, and environmental conditions. This scale 

demands infrastructure capable of ingesting, validating, transforming, and storing data at unprecedented velocities while maintaining data quality and 

accessibility for downstream analytics.



The Temporal Dimension
Temporal dependencies are fundamental to IoT analytics. Current sensor readings 

gain meaning only through historical context. A temperature reading becomes 

significant when compared to baseline averages, recent fluctuations, and seasonal 

variations. Vibration measurements reveal equipment issues through frequency 

changes over time.

Feature engineering must incorporate sophisticated time-series transformations: 

rolling window aggregations capturing trends, lag features preserving historical states, 

rate-of-change calculations identifying acceleration patterns, and seasonal 

decomposition separating cyclical behaviors from genuine anomalies. Traditional 

pipelines struggle to implement these transformations consistently and efficiently 

across diverse sensor types and temporal scales.



Data Quality and Fragmentation
Common IoT Data Issues
• Sensor failures producing null or erroneous values

• Communication disruptions creating data gaps

• Environmental interference introducing 

measurement noise

• Device heterogeneity complicating alignment

• Inconsistent sampling rates across sensor types

Organizational Challenges
IoT pipelines evolve organically as teams develop isolated solutions. Data engineering 

teams build ingestion systems. Data science teams create model-specific 

transformations. Operations teams develop monitoring dashboards with separate 

aggregation logic.

This fragmentation results in duplicated effort, inconsistent feature definitions, 

difficulty reproducing model results, and escalating maintenance burdens as each 

pipeline requires independent updates and monitoring.



The Feature Store Concept
01

Centralized Management
Unified repository for all ML features with consistent definitions across 

teams and applications

02

Feature Reuse
Enable multiple models to leverage common transformations, reducing 

duplication and ensuring consistency

03

Version Control
Maintain feature versioning for reproducibility and gradual model 

migration without breaking changes

04

Optimized Serving
Efficient feature computation and delivery to production models at scale 

with minimal latency



Snowflake Architecture Advantages

Semi-Structured Data
Native VARIANT type stores JSON sensor 

data directly without predefined schemas. 

SQL extensions navigate nested 

structures, extract fields, and combine 

information within familiar declarative 

syntax.

Time Travel
Historical data versions enable 

reproducibility. Queries reference exact 

data states at specific timestamps, 

allowing feature reconstruction for model 

training verification even as source data 

continues updating.

Incremental Processing
Materialized views and streams capture 

changes efficiently. Features update 

incrementally processing only new sensor 

readings rather than recomputing across 

entire datasets.



Three-Layer Architecture Pattern

Raw Data Layer
Landing zone for sensor streams with minimal transformation. Preserves original timestamps, device IDs, and all measurement fields. 

Partitioned by ingestion time for lifecycle management. Foundation for data quality monitoring.

Transformation Layer
Core feature engineering logic translates sensor readings into ML features. Modular components for time-series aggregations, event 

detection, device health metrics, and contextual features. Implemented with DBT for version control and testing.

Serving Layer
Optimized for efficient retrieval by ML applications. Organized around device entities for fast lookups. Denormalized to eliminate joins 

during serving. Implements feature versioning for model migration support.



DBT: Software Engineering for Features
DBT transforms feature engineering from ad-hoc scripting into structured 

software practice. Each transformation becomes an independent model with 

explicit dependencies. DBT constructs directed acyclic graphs determining 

execution order while parallelizing independent operations.

Reusable Macros: Abstract common patterns like rolling window statistics into 

parameterized templates. Single macro definitions handle multiple sensor 

types and aggregation functions, ensuring consistent implementation.

Automated Testing: Tests defined alongside models specify expectations for 

feature values—uniqueness constraints, not-null checks, referential integrity, 

and domain-specific validation. Tests execute automatically, catching quality 

issues before features reach models.



Python Integration for Specialized Processing

User-Defined Functions
Snowflake executes Python UDFs within 

the warehouse, processing data in parallel 

across compute resources without 

external data movement. Maintains unified 

governance and security policies.

Hybrid Approach
DBT handles orchestration and bulk 

transformations where SQL excels. Python 

functions invoked selectively for 

specialized computations. Balances 

performance with expressiveness.

Library Ecosystem
Access Pandas for time-series 

manipulation, scikit-learn for encoding and 

scaling, SciPy for signal processing, or 

custom domain algorithms—all executing 

on distributed compute.



Cost Optimization Strategies
Compute Optimization

Snowflake charges based on warehouse size and runtime. Different transformations require different compute profiles. Simple aggregations run 

efficiently on small warehouses. Complex multi-way joins benefit from medium configurations. Embarrassingly parallel operations scale to large 

warehouses. DBT enables warehouse specification at model level, automatically matching compute to complexity.

Storage Intelligence

Implement tiered retention: retain raw data at full granularity for recent periods supporting development, downsample older data to coarser 

resolutions reducing volume while preserving trends, archive ancient data to cold storage for compliance while removing from active warehouse. 

Clustering keys on device and time dimensions enable query pruning, minimizing scanned data volume and reducing compute charges.

Result Caching

Repeated queries return cached results without compute charges. Particularly valuable for features computed from large historical windows where 

execution requires substantial scanning but results remain valid until new data arrives. Structure queries to maximize cache hits through stable 

feature definitions.



Performance Patterns and Trade-offs

1

Batch Retrieval
Queries retrieving features for thousands of devices leverage 

columnar storage and parallel processing. Performance scales 

linearly with warehouse size. Ideal for model training and batch 

inference.

2

Point Lookups
Individual device queries include warehouse startup overhead. 

Competent performance but not sub-second latency. Motivates 

hybrid architectures with low-latency caching for real-time inference.

3

Join Optimization
Star schemas with proper clustering enable efficient joins. Pre-

materialized denormalized views trade storage for improved latency. 

Favor denormalization for frequent access patterns.



Production Operations and Governance
Monitoring Dimensions

• Data quality metrics: completeness, accuracy, timeliness

• Pipeline health: execution times, success rates, resource utilization

• Feature drift: statistical property changes signaling issues

• Query performance: serving latencies and throughput trends

Access Control

Role-based permissions restrict feature access to authorized users. 

Row-level security filters data based on user attributes. Data masking 

protects sensitive fields in development environments.

Version Management

Support multiple feature versions during model transitions. Old models 

use established definitions while new models consume updated 

features. Snowflake schemas separate versions with appropriate 

access control. DBT version control maintains transformation histories.

Cost Governance

Tag warehouses and storage with project identifiers for cost attribution. 

Establish budgets with alerts for quota exceedances. Implement 

approval workflows for expensive operations. Regular reviews identify 

optimization opportunities.



Real-World Impact: Case Studies
Manufacturing Predictive 
Maintenance
Large manufacturer consolidated disparate 

feature pipelines supporting failure prediction, 

quality forecasting, and energy optimization. 

Shared transformations captured common 

patterns while specialized features built on 

unified foundations. Reported significant 

development time reductions and improved 

model accuracy from consistent feature 

definitions.

Smart Building Operations
Building operator implemented layered DBT 

models consuming HVAC, lighting, and 

occupancy data. Intermediate models 

computed aggregations with weather 

enrichment. Feature models combined 

elements for optimization algorithms. DBT 

testing caught sensor communication failures 

before affecting predictions.

Utility Smart Meters
Utility managing millions of customers 

migrated from dedicated feature platform 

struggling with throughput and storage costs. 

Snowflake's columnar storage and dynamic 

scaling handled processing spikes efficiently. 

Aggressive clustering enabled historical 

lookups. Substantial cost reductions with 

improved feature computation latency.



Key Takeaways and Next Steps

Start with Requirements
Understand feature serving patterns upfront. Access patterns 

fundamentally influence denormalization, materialization, and 

caching decisions.

Invest in Quality
Build data quality monitoring from day one. Detecting issues 

upstream prevents cascading problems in features and models.

Design Modular
Adopt layered architecture enabling iterative development and 

gradual migration rather than wholesale replacement of legacy 

systems.

Engineering Discipline
Treat features as software with testing, documentation, and code 

review. Teams applying rigorous practices achieve maintainable, 

reliable systems.



Questions..?
Thank You!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

