
Building Resilient AI Platforms at 
Scale
Engineering Infrastructure for Real-Time 
Computer Vision Deployments
By Manoj Sai Jayakannan, George Mason University

AI-powered systems have rapidly evolved from research prototypes into mission-
critical enterprise applications. Among them, real-time computer vision platforms 
demand exceptionally high throughput, low latency, and operational resilience. 
Delivering these capabilities at scale requires a new approach to platform engineering—
one that blends traditional DevOps principles with ML-specific considerations such as 
GPU orchestration, data pipeline monitoring, and model versioning.



Abstract

This article provides a comprehensive examination of platform engineering practices for 
large-scale AI deployments. It explores the end-to-end lifecycle—from designing 
containerized ML pipelines and implementing efficient model serving architectures to 
establishing observability frameworks and building self-healing, fault-tolerant 
infrastructure. We examine both the conceptual principles and practical engineering 
achievements that allow organizations to reliably operate AI platforms in production.



Introduction
The transition from traditional software systems to AI-driven platforms introduces fundamental changes in architecture, resource management, and 
operational workflows. Unlike conventional workloads, AI platforms must handle:

Compute-intensive GPU workloads

For training and inference operations

Massive real-time data ingestion

Particularly with visual inputs

Model lifecycle management

Including versioning, monitoring, and retraining

Dynamic scaling requirements

Where demand can fluctuate drastically

For computer vision applications such as autonomous systems, surveillance, quality control, and smart cities, these challenges are amplified. The ability 
to process visual data at scale, with millisecond-level response times, requires a resilient engineering foundation that integrates automation, scalability, 
and observability.



Foundations of AI Platform Engineering
Traditional DevOps methodologies provide a starting point but are insufficient in isolation. Platform engineering for AI introduces additional layers of 
complexity. Three foundational principles guide success:

Infrastructure as Code (IaC)

Using tools like Terraform, Pulumi, or AWS 
CloudFormation, infrastructure is 
declaratively defined, enabling consistent 
replication of GPU-enabled environments, 
version-controlled infrastructure evolution, 
and reduced configuration drift across dev, 
staging, and production.

GitOps Workflows

GitOps extends CI/CD pipelines by treating 
Git as the single source of truth. With 
automated synchronization tools (e.g., 
ArgoCD, Flux), platform states self-correct 
to match Git configurations, ensuring 
immutable deployments, automated 
rollbacks, and auditability.

Automated Testing Strategies

Unlike traditional software, AI requires 
specialized testing frameworks for data 
validation, model validation, and integration 
tests for end-to-end pipeline workflows.



Containerized ML Pipelines
Containerization has become the de facto standard for managing ML pipelines. By 
packaging dependencies, models, and runtime environments, containers deliver 
reproducibility and modularity.

Design Considerations

• Modular Pipelines: Separate 
containers for ingestion, 
preprocessing, training, and 
inference

• GPU Enablement: Leveraging 
NVIDIA Docker runtime and 
Kubernetes device plugins

• Versioned Builds: Ensuring 
deterministic builds tied to Git 
commits

Kubernetes Orchestration

• Pod scheduling with GPU constraints

• Horizontal Pod Autoscaling (HPA) 
for inference workloads

• Node pools optimized for different 
pipeline stages



Real-World ML Pipeline Example

Data Ingestion Pods

Pulling video streams from IoT sensors

Preprocessing Pods

Applying transformations (normalization, augmentation)

Model Training Pods

Leveraging distributed GPUs

Inference Pods

Serving predictions via REST or gRPC endpoints

An enterprise-scale vision system orchestrates these components to create an end-to-end pipeline that efficiently processes visual data at scale while 
maintaining high availability and performance.



Model Serving Architectures
A critical challenge is serving models at low latency while ensuring reliability.

Deployment Patterns

1

Blue-Green Deployments

Running new model versions in 
parallel with old ones, switching 
traffic seamlessly

2

Canary Releases

Gradually rolling out models to a 
subset of users

3

Shadow Deployments

Testing models in production environments without exposing outputs to users



Model Serving Optimizations

Batching Inference Requests

Grouping multiple inference requests together 
to maximize GPU utilization and throughput, 
reducing per-request overhead and improving 
overall system efficiency.

Model Caching and Warm Starts

Keeping frequently accessed models in memory 
to eliminate cold-start latency, providing faster 
response times for common inference patterns.

Accelerated Serving Frameworks

Implementing specialized frameworks such as 
TensorRT, Triton Inference Server, or 
TorchServe to optimize model execution on 
hardware.



Observability in AI Systems
Observability transcends infrastructure monitoring by incorporating model and data-centric metrics.

1
Infrastructure Metrics

CPU/GPU utilization, memory, network throughput

2
Pipeline Monitoring

Success rates, queue latencies, data integrity checks

3
Model Observability

Prediction drift, latency, error rates, fairness metrics



Observability Tooling Ecosystem

Infrastructure Monitoring

Prometheus + Grafana for comprehensive 
infrastructure dashboards tracking resource usage 
and system health

Distributed Tracing

OpenTelemetry for distributed tracing across ML 
pipelines, identifying bottlenecks and latency issues

ML-Specific Monitoring

Custom ML Monitoring Tools like WhyLabs, Arize AI, 
or bespoke solutions for data drift and bias detection

By coupling observability with alert thresholds, systems can detect anomalies before they escalate—such as GPU saturation, rising inference latency, or degraded model 
accuracy.



Self-Healing and Fault Tolerance
Resilient platforms must recover automatically from failure without manual intervention.

Kubernetes Liveness/Readiness 
Probes

Automatically restart failing containers 
when health checks fail, ensuring 
continuous service availability

Cluster Autoscaling

Dynamically adjust compute resources 
based on workload demands, optimizing for 
both performance and cost

Chaos Engineering

Inject failures (via tools like Chaos Mesh) to 
validate system resilience under unexpected 
conditions



Fault-Tolerant Architectures

Distributed Processing 
Pipelines

Ensuring no single point of failure by 
distributing workloads across 
multiple nodes and regions

Geo-Redundant Clusters

Supporting global AI workloads with 
multi-region deployments for 
disaster recovery and low-latency 
serving

Event-Driven Recovery

Automated rerouting of workloads on node failure through event-based 
orchestration systems



Engineering Achievements and Metrics
Organizations implementing these principles consistently report significant improvements across key performance indicators:

99.9%
Uptime & Reliability

SLA compliance in production AI 
systems

Hours
Deployment Velocity

Model updates deployed within 
hours (vs. weeks in traditional 

workflows)

20-40%
Cost Reduction

Through optimized GPU scheduling 
and resource allocation

↑
Developer Productivity

Teams focus on innovation instead 
of firefighting operations



Broader Impact
The convergence of platform engineering and AI operations (MLOps) represents a paradigm shift. Enterprises that adopt these resilient practices achieve:

Faster Time-to-Market

Accelerated delivery of AI products through streamlined 
deployment pipelines and automated workflows

Reduced Operational Overhead

Lower maintenance costs through comprehensive 
automation of routine tasks and self-healing systems

Sustained Trust

Enhanced confidence in AI systems by ensuring 
transparency, fairness, and consistent performance

These practices are not limited to computer vision—they extend to NLP, recommendation systems, and generative AI where real-time processing is equally critical.



Conclusion
The journey of building resilient AI platforms at scale is fundamentally about 
engineering trust into AI systems. Through containerized ML pipelines, efficient serving 
architectures, comprehensive observability, and self-healing infrastructure, 
organizations can deploy computer vision systems that are both high-performing and 
reliable.

By applying modern platform engineering principles—IaC, GitOps, automated testing, 
and fault-tolerant design—enterprises not only achieve operational resilience but also 
unlock faster innovation cycles and enhanced developer productivity.

As real-time AI continues to transform industries, the ability to engineer resilient, 
scalable, and intelligent platforms will define the next generation of enterprise success 
stories.


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

