Building Resilient Al Platforms at
Scale

Engineering Infrastructure for RealTime
Computer Vision Deployments

By Manoj Sai Jayakannan, George Mason University

Al-powered systems have rapidly evolved from research prototypes into mission-
critical enterprise applications. Among them, real-time computer vision platforms
demand exceptionally high throughput, low latency, and operational resilience.
Delivering these capabilities at scale requires a new approach to platform engineering—
one that blends traditional DevOps principles with ML-specific considerations such as

GPU orchestration, data pipeline monitoring, and model versioning.

Abstract

This article provides a comprehensive examination of platform engineering practices for
large-scale Al deployments. It explores the end-to-end lifecycle—from designing
containerized ML pipelines and implementing efficient model serving architectures to
establishing observability frameworks and building self-healing, fault-tolerant
infrastructure. We examine both the conceptual principles and practical engineering

achievements that allow organizations to reliably operate Al platforms in production.

Introduction

The transition from traditional software systems to Al-driven platforms introduces fundamental changes in architecture, resource management, and

operational workflows. Unlike conventional workloads, Al platforms must handle:

Compute-intensive GPU workloads Massive realtime data ingestion
For training and inference operations Particularly with visual inputs

Model lifecycle management Dynamic scaling requirements
Including versioning, monitoring, and retraining Where demand can fluctuate drastically

For computer vision applications such as autonomous systems, surveillance, quality control, and smart cities, these challenges are amplified. The ability
to process visual data at scale, with millisecond-level response times, requires a resilient engineering foundation that integrates automation, scalability,
and observability.

Foundations of Al Platform Engineering

Traditional DevOps methodologies provide a starting point but are insufficient in isolation. Platform engineering for Al introduces additional layers of

complexity. Three foundational principles guide success:

Infrastructure as Code (IaC) GitOps Workflows Automated Testing Strategies

Using tools like Terraform, Pulumi, or AWS GitOps extends CI/CD pipelines by treating Unlike traditional software, Al requires

CloudFormation, infrastructure is Git as the single source of truth. With specialized testing frameworks for data

declaratively defined, enabling consistent automated synchronization tools (e.g., validation, model validation, and integration
replication of GPU-enabled environments, ArgoCD, Flux), platform states self-correct tests for end-to-end pipeline workflows.
version-controlled infrastructure evolution, to match Git configurations, ensuring
and reduced configuration drift across dev, immutable deployments, automated

staging, and production. rollbacks, and auditability.

Containerized ML Pipelines

Containerization has become the de facto standard for managing ML pipelines. By
packaging dependencies, models, and runtime environments, containers deliver

reproducibility and modularity.

Design Considerations Kubernetes Orchestration
e Modular Pipelines: Separate e Pod scheduling with GPU constraints
containers for ingestion, e Horizontal Pod Autoscaling (HPA)

preprocessing, training, and for inference workloads

inference
e Node pools optimized for different

e GPU Enablement: Leveraging
NVIDIA Docker runtime and

Kubernetes device plugins

pipeline stages

e Versioned Builds: Ensuring
deterministic builds tied to Git

commits

RealWorld ML Pipeline Example

Q)

) S

Data Ingestion Pods Preprocessing Pods

Pulling video streams from loT sensors Applying transformations (normalization, augmentation)

63 pa

Model Training Pods Inference Pods

Leveraging distributed GPUs Serving predictions via REST or gRPC endpoints

An enterprise-scale vision system orchestrates these components to create an end-to-end pipeline that efficiently processes visual data at scale while

maintaining high availability and performance.

Model Serving Architectures

A critical challenge is serving models at low latency while ensuring reliability.

Deployment Patterns

—e——0—

Blue-Green Deployments Canary Releases
Running new model versions in Gradually rolling out models to a
parallel with old ones, switching subset of users

traffic seamlessly

S —— S —————————

Shadow Deployments

Testing models in production environments without exposing outputs to users

Model Serving Optimizations

T &

Batching Inference Requests Model Caching and Warm Starts Accelerated Serving Frameworks
Grouping multiple inference requests together Keeping frequently accessed models in memory Implementing specialized frameworks such as
to maximize GPU utilization and throughput, to eliminate cold-start latency, providing faster TensorRT, Triton Inference Server, or
reducing per-request overhead and improving response times for common inference patterns. TorchServe to optimize model execution on

overall system efficiency. hardware.

Observability in Al Systems

Observability transcends infrastructure monitoring by incorporating model and data-centric metrics.

Infrastructure Metrics

1 CPU/GPU utilization, memory, network throughput

Pipeline Monitoring

Success rates, queue latencies, data integrity checks

Model Observability

Prediction drift, latency, error rates, fairness metrics

Observability Tooling Ecosystem

Infrastructure Monitoring Distributed Tracing ML-Specific Monitoring

Prometheus + Grafana for comprehensive OpenTelemetry for distributed tracing across ML .))
Custom ML Monitoring Tools like WhyLabs, Arize Al,

infrastructure dashboards tracking resource usage pipelines, identifying bottlenecks and latency issues))))
or bespoke solutions for data drift and bias detection

and system health

By coupling observability with alert thresholds, systems can detect anomalies before they escalate—such as GPU saturation, rising inference latency, or degraded model

accuracy.

SelfHealing and Fault Tolerance

Resilient platforms must recover automatically from failure without manual intervention.

©

Kubernetes Liveness/Readiness Cluster Autoscaling Chaos Engineering

Probes Dynamically adjust compute resources Inject failures (via tools like Chaos Mesh) to
Automatically restart failing containers based on workload demands, optimizing for validate system resilience under unexpected
when health checks fail, ensuring both performance and cost conditions

continuous service availability

Fault-Tolerant Architectures

Distributed Processing Geo-Redundant Clusters
Plpelmes Supporting global Al workloads with
Ensuring no single point of failure by multi-region deployments for
distributing workloads across disaster recovery and low-latency
multiple nodes and regions serving

Event-Driven Recovery

Automated rerouting of workloads on node failure through event-based

orchestration systems

Engineering Achievements and Metrics

Organizations implementing these principles consistently report significant improvements across key performance indicators:

99.9% Hours 20-40% 1

Uptime & Reliability Deployment Velocity Cost Reduction Developer Productivity
SLA compliance in production Al Model updates deployed within Through optimized GPU scheduling Teams focus on innovation instead
systems hours (vs. weeks in traditional and resource allocation of firefighting operations

workflows)

Broader Impact

The convergence of platform engineering and Al operations (MLOps) represents a paradigm shift. Enterprises that adopt these resilient practices achieve:

Faster Timeto-Market Reduced Operational Overhead :
P Sustained Trust
Accelerated delivery of Al products through streamlined Lower maintenance costs through comprehensive)) _
L . . . Enhanced confidence in Al systems by ensuring
deployment pipelines and automated workflows automation of routine tasks and self-healing systems

transparency, fairness, and consistent performance

These practices are not limited to computer vision—they extend to NLP, recommendation systems, and generative Al where real-time processing is equally critical.

Conclusion

The journey of building resilient Al platforms at scale is fundamentally about
engineering trust into Al systems. Through containerized ML pipelines, efficient serving
architectures, comprehensive observability, and self-healing infrastructure,
organizations can deploy computer vision systems that are both high-performing and

reliable.

By applying modern platform engineering principles—IaC, GitOps, automated testing,
and fault-tolerant design—enterprises not only achieve operational resilience but also

unlock faster innovation cycles and enhanced developer productivity.

As real-time Al continues to transform industries, the ability to engineer resilient,
scalable, and intelligent platforms will define the next generation of enterprise success

stories.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

