
Go Performance Unleashed
Profiling and Optimising your Go applications

Marco Marinò



About myself 

• Software Engineer @ ION


• Master’s degree student in AI @ University of Pisa, Italy


• Kubernetes and cloud native enthusiast


• Best paper award winner @ CLOSER 2023 Cloud Conference


• “Semi-Automated Smell Resolution in Kubernetes-Deployed Microservices”



Agenda

• How Go’s Runtime Scheduler and Memory Model impact performance


• How to measure performance with benchmarks


• Leveraging pprof for in-depth profiling


• Best practices



First things first…

Go is a fast language… But why? 



CSP (Communicating Seq. Processes)



Why a new runtime scheduler is needed?

Let’s switch from Go to Java…
Java App

OS Kernel



A Java Example



The Challenge

#threads = 100

#threads = 9900



Go Runtime Scheduler Where N = GOMAXPROCS

Th1

C1

Go Go

Go

…

Th2

C2

Go Go

Go

GoX

ThN

CN…

Runqueue

Stealing work

GoX



Another Java comparison



OS threads have a fixed-size stack for saving the state…

Constants

Instructions
Stack Heap



Go Memory Model

Constants

Instructions
Heap

ConstantsConstantsConstantsConstantsConstantsConstantsConstantsConstantsConstantsConstantsConstantsConstantsConstantsStack



Benchmarking preconditions

• Compare two or more implementations with the most consistent environment


• Minimise the environmental impact


• It’s crucial to isolate the code being benchmarked from the rest of the 
program



How to write a Benchmark 

• Create a file with suffix “_test.go” where to put all benchmark functions


• Each benchmark function is expected to have func 
BenchmarkXxx(*testing.B) as a signature, where testing.B type manages the 
benchmark’s timing


• b.N specifies the number of iterations, dynamically specified at runtime



Benchmarking two functions



Create and Run the benchmark functions

After (1) replace RunPipeline1 with  
RunPipeline2 in the same bench 
function, and run (2)

(1)

(2)



How to read a Benchmark

#Iterations Nanosec/op #bytes/op #allocs/op



Using Benchstat to compare the results



Be aware of compiler optimisations



Profiling
From pprof docs…

• pprof is a tool for visualisation and analysis of profiling data 


• pprof reads a collection of profiling samples in profile.proto format and 
generates reports


• https://developers.google.com/protocol-buffers


• Available by running: ‘go install github.com/google/pprof@latest'

https://developers.google.com/protocol-buffers
http://github.com/google/pprof@latest'


Most cpu expensive tasks

🤔
Why there’s a sleep?

Why there’s no track of 
functions with suffix 2? 
functions with 2 at the end  
are related to RunPipeline2 
and there were faster 
than all the methods with suffix1



What if we scroll down…

🤠

Here are our fast stages!



Let’s dive into the code with pprof by isolating 
the slowest function (RunPipeline1)

*Let’s skip the time.Sleep 
as it was added as an  
example, as it present even 
in the faster function

Seems we’re loosing time and 
memory here with this ~17s 
part… we can do better by  
calling strings.toLower(s) 
directly…



… now let’s analyse the faster one

Now we can see there is not  
that useless for loop, but using 
the strings.ToLower(s) still has  
a cost of course… But overall 
we saved almost ~5s



… hey we also produced a memory 
profile !

Here as well we can see 
the benefits the second function 
brought to us in terms of memory 
and number of allocations per  
operation…



Best practices

• Try to design your application as a pipeline of goroutines, and exploit the 
capability of go for scaling your goroutines!


• Use -benchtime and -count flags for your benchmarks


• Always keep track of the memory usage as it can cause a garbage collection 
run and therefore potential wasted time


• Try to execute benchmarks on a stable machine without having spikes during 
the test



Some study references…

• https://golangbyexample.com/goroutines-golang/


• https://go.dev/ref/mem


• https://www.kelche.co/blog/go/golang-scheduling/


• https://blog.logrocket.com/benchmarking-golang-improve-function-
performance/


• https://github.com/google/pprof/blob/main/README.md

https://golangbyexample.com/goroutines-golang/
https://go.dev/ref/mem
https://www.kelche.co/blog/go/golang-scheduling/

