1/51

How to prove the safety of
your software
conf42.com Python talk

3/51
Introduction

e Hello! I am:

o 2 Marco Verleun (marco.verleun@i-share.nl)

o ¥ Devops/GitOps/Cloud/Container/Cluster/Linux engineer (Pick one)

o @ Passion: Secure K8S clusters (air-gapped) running secure containers

4/51

Short agenda

During this talk I want to share with you how to reveal the safety of your code without
revealing the application logic.

And I hope to create a bit more awareness about the environment in which your
application will be running.

Let's have a look at a different industry with similar challenges...

6/51

N
-
14
Q
<
—
=
<
1))

<
>
0“
R.
2
o
=

7/51

From code to production

Previous part | Back to table of contents | Next part

8/51
From code to production

It starts with the code...

9/51

From code to production

It starts with the code...
Which gets deployed inside/on:

e An appliance
e A host
e A container

Or is reused as an module.

10/51

A (random) app step by step: worker.py

Let's explore what happens to an app (written by Jerome Petazzo) which will run inside a
container. The source code can be found here: worker.py

We'll see that the number of CVE's will increase as the code moves on during the build
process from app to container image.

We will not focus on the application logic, only on the safety.

We want to assure our customers/users/ops collegues that the code does not contain any
critical CVE's.

How can we do this?

https://github.com/jpetazzo/container.training/blob/main/dockercoins/worker/worker.py

11/51

How 1s this done in the food industry?

Let's first look at how the food industry is doing this.

12/51

s
=~

ALY
Aru el
pe 1t

il ekt ale s it

ol Ll S il e 2 ol |

w5
d b
o 8

4
=
w3

13/51

Food safety

Previous part | Back to table of contents | Next part

14/51

Food safety

Would you consume this?

Or this?

_FOOD ALLERGY
WARNING

Please be advised that our food may have
come in contact or contain peanuts, tree nuts,
soy, milk, eggs, wheat, shellfish or fish.

“SS Tt &

Please ask a staff member about the ingredients used in
your meal before ordering. Thank you — Management.

e | |

15/51

16/51

It probably depends...

e A blank container is for the adventurous amongst us and might be delicious.

e Other people might be more interested in nutritious facts.

17/51

It is nice to know what's inside

It is nice to know what the contents of a product are before you decide if you want to
consuime it.

Food labels are ment to do this without revealing a recipe.

18/51
Have a look at this

LESBELLES DE MARSEILLE PISS

Ingredients: Onions 44%, Sar
3%, Sunflower Oil, Black O
Garlic, Water, Extra Virgin f

Aromatic Plants, Pepper

" Allergen Declaration: Fis

. Before Opening, store a
After Opening, keep ref
consumed quickly.

Imported By: Culina Pte L L
24 Senoko Wa

19/51

Why not do the same with our

e Hardware
o Software
o Saas solutions

o etcC.

20/51

...BOMs are there to help

Have a look at https://github.com/CycloneDX/bom-examples

We focus on SBOM during this talk.

https://github.com/CycloneDX/bom-examples

Td

M e W™ M

-

Wi (A u.“\!l 3
L IRA T

9

e " ke

|

™ S

e -

Tie

o

L,
FATE

2l

= w ’!F‘;s o
' L A
A

22/51

Why use SBOMs?

Previous part | Back to table of contents | Next part

23/51

Why use SBOMs?

Do you want to be in control of your software?

Let's see some reasons why you want to use SBOM's.

24/51
Did you see this?

cURL Vulnerability CVE-2023-38545
for Python Systems

October 10, 2023 - 4 mins

A high-severity vulnerability in cURL and its associated library libcurl was disclosed on 11
October, 2023, with widespread impact likely. This post examines the vulnerability,
impacted Python packages, and recommended actions. This article will be updated as new
information becomes available throughout the coming hours and days.

& NET &
cURL: Special Python

Vulnerability Advisory
CVE-2023-38545

& S»fety

25/51

Was your app atfected?

If so:

e How did you know?
e How long took it to figure it out?

26/51

Was your app atfected?

If so:

e How did you know?
e How long took it to figure it out?

SBOM's are extremly useful in these situations...

Look at this:

27/51

Like food labels SBOMs tell you what's inside

#%%, Sunflower Oil, Black Oliv
Garlic, Water, Extra Virgin' 0il

Aromatic Plants, Pepper e

Net Weight: 110g Expiry Date:
&= Allergen Declaration: Fish

Imported By: Culina Pte Ltc
24 Senoko W§ /

28/51

Example SBOM snippet

"id": "e1597ba21775e886",
"name": "certifi",
"version": "2022.12.7",

"type": "pythOn",
"foundBy": "python-package-cataloger",

"locations": [

{
"path": "/usr/local/lib/python3.11/site-packages/certifi-2022.12.7.dist-info

"layerID": "sha256:2ecbe4cb3d052a933e1cab8d573b14cfb4c50df323ed4efde9ceced26¢

"annotations": {
"evidence": "primary"

"licenses": [
{
"value": "MPL-2.0",
"spdxExpression": "MPL-2.0",
"type": "declared",

29/51
More and more you can download them upfront

eoe [< # github.com g O ® d] + D

(5 i-Share v [Beheer v Q toyase-stack/...toyase-stack DALLE 2 .sta Ista Home - K...al Debicasso la Juegos de esc...e - Esklavos [Administratie v [3D Printing v P>

N - . ~ ’ ..

« [cd4958c3] - deps: update sigstore/cosign-installer digest to 9c520b9
« [897dbds6]| - deps: update github.com/anchore/stereoscope digest to bf05af5
« [7fa93c62] - deps: update alpine:3.18 docker digest to eece025

v Assets 24

@multiple.intoto.jsonl 17.1 KB 2 weeks ago
—* Qoci-sbom.json 167 KB 2 weeks ago
Qoci-sbom.json.pem 3.3KB 2 weeks ago
@oci-sbom.json.sig 96 Bytes 2 weeks ago
@sbom-operator-0.29.0.tar.gz 1.04 MB 2 weeks ago
@sbom-operator-0.29.0.tar.gz.pem 3.3 KB 2 weeks ago
@sbom-operator-0.29.0.tar.gz.sig 96 Bytes 2 weeks ago
@sbom-operator_0.29.0_checksums.txt 528 Bytes 2 weeks ago
@sbom-operator_0.29.0_checksums.txt.pem 3.3KB 2 weeks ago
®sbom-operator_O.29.0_checksums,txt.sig 96 Bytes 2 weeks ago
[Z)Source code (zip) 2 weeks ago
[F)source code (tar.gz) 2 weeks ago

Show all 24 assets

®

Sep 23 0.28.0
(@) sithub-actions)

30/51
And analyze them before you install something

| docker.io/bkimminich/juice-shop » v13.0.3
docker.io/bkimminich/juice-shop + v13.0.3 @ 1

= Audit Vulnerabilities |10s

Caarct ~
.- o

Component 4% Version % Group % Vulnerability 4 Severity § Analyzer Attributed On % Analysis % Suppressed #%

B o (o 18 Nov 2023
B o 18 Nov 2023
B -ion 7] 19 Nov 2023
B ion "] 19 Nov 2023

18 Nov 2023

3002500

A

*,
it

-
=
)

32/51

Back to our app: worker.py

Previous part | Back to table of contents | Next part

33/51
Back to our app: worker.py

Let's follow our app from code to deployment in a container.

During each step we'll analyze the software and show some highlights.

34/51

Step 1: The code

import logging

import os

from redis import Redis
import requests

import time

Féais = Redis("redis")

def work_loop(interval=1):
deadline = 0@
loops_done = 0
while True:
if time.time() > deadline:
log.info("{} units of work done, updating hash counter"
.format(loops_done))
redis.incrby("hashes", loops_done)
loops_done = 0
deadline = time.time() + interval
work_once()
loops_done += 1

35/51
Shipping the app.

We will distribute our app in a docker container.

The following base images are used to see which would be the best image for our app. We
have already determined that the app will run fine with all the mentioned images:

e python:alpine
e python:3.9.18-slim
e python:latest

36/51

Building the container images

The container build is done with a small Dockerfile. The only thing that changes is the
FROM line where different base images are specified:

FROM python:latest

RUN pip install redis

RUN pip install requests
COPY worker.py /

CMD ["python", "worker.py"]

FROM python:alpine

RUN pip install redis

RUN pip install requests
COPY worker.py /

CMD ["python", "worker.py"]

37/51
Build result

The build result is as follows:

docker image 1s

REPOSITORY TAG IMAGE ID CREATED SIZE
worker 3.9.18-slim 47f85c518f2d 7 seconds ago 237MB
worker alpine 890af8c86632 About a minute ago 110MB

worker latest 9011701a671b 3 minutes ago 1.49GB

38/51

SBOM creation

SBOM's are create from the source code and the images for further analyses. The tool used
1s syft, but it could have been another tool as well.

Analysis is done with grype because it produces output that fits nice in this presentation.

Let's see how each step adds vulnerabilities. Note that the number of reported CVE's was
correct at the time of writing. Quite likely more CVE's have been discoverd since then.

Source code analysis:

The source code is quite clean. Only one CVE is reported:

grype --add-cpes-if-none sbom-worker.py. json

v Vulnerability DB [no update available]

v Scanned for vulnerabilities [1 vulnerability matches]

—— by severity: 0 critical, 0 high, 1 medium, 0 low, 0 negligible
—— by status: 1 fixed, 0 not-fixed, @ ignored

39/51

40/51
Our first image based on python:latest

This is the most tempting image. It seems to be very complete, but maybe it contains to
much?

grype --add-cpes-if-none sbom-python-latest. json

v Vulnerability DB [no update available]

v Scanned for vulnerabilities [1700 vulnerability matches]
—— by severity: 21 critical, 359 high, 519 medium, 73 low, 721 negligible (7 unkn:

—— by status: 448 fixed, 1252 not-fixed, 0 ignored

Wow... We went from only 1 CVE to 1700...

41/51

Can we do better: python:3.9.18-slim

A slim image with more than enough to run our application, but much less than
python:default.

grype --add-cpes-if-none sbom-python-3.9.18-slim. json

v Vulnerability DB [no update available]

v Scanned for vulnerabilities [101 vulnerability matches]
—— by severity: 1 critical, 11 high, 28 medium, 3 low, 55 negligible (3 unknown)
—— by status: 14 fixed, 87 not-fixed, @ ignored

That's already a huge difference. Especially when you pay attention to the critical and high
rated CVE's

42/51

Let's try one more image: python:alpine

grype --add-cpes-if-none sbom-python-alpine.json

v Vulnerability DB [no update available]

v Scanned for vulnerabilities [21 vulnerability matches]

—— by severity: 0 critical, 1 high, 18 medium, © low, 0 negligible (2 unknown)
—— by status: 9 fixed, 12 not-fixed, 0 ignored

Summary

The scores are shown in the table below.

Source Critial High Medium Low
worker.py 0 0 1 0
python-latest 21 359 519 73 low
python:3.9.18-slim 1 11 28 3 low
python:alpine 0 1 18 0 low

Any idea which image I prefer to deploy?

43/51

44/51

Storing SBOM files

If you store these SBOM's files you can quickly evaluate if new CVE's are introduced
without scanning every component or image again.

Or you can store them in a database like Dependency Track which will periodically
evaluate the vulnerabilities and, if configured, send you notifications when your attention

is required.

45/51

Distributing SBOM files

The federal US government expects vendors to provide SBOM files prior to purchasing
software or appliances. And they are not alone.

On github.com you'll see them appear as well, waiting for you to download them.

Even the new standard for container registries allows you to store SBOM information. The
docker buildx command can do this as well.

46/51
Final words

When working with SBOM tools make sure you're using good ones. When in doubt
compare tools and see if the meet your needs. Some are good for source code, others can
only identify os components and some can do both. Not all are equally good...

47/51

48/51

Interesting links

Previous part | Back to table of contents | Next part

Interesting links

By far not complete, but check this out:

Generating SBOMs

https://github.com/kubernetes-sigs/bom
https://github.com/anchore/syft
https://docs.docker.com/engine/shom/
https://github.com/ckotzbauer/sbom-operator

https://github.com/microsoft/sbom-tool

49/51

https://github.com/kubernetes-sigs/bom
https://github.com/anchore/syft
https://docs.docker.com/engine/sbom/
https://github.com/ckotzbauer/sbom-operator
https://github.com/microsoft/sbom-tool

50/51

Storing SBOMs

https://github.com/dlorenc/sbom-oci
https://docs.docker.com/build/attestations/sbom/

https://dependencytrack.org

https://github.com/dlorenc/sbom-oci
https://docs.docker.com/build/attestations/sbom/
https://dependencytrack.org/

51/51

Analyzing SBOMs

https://dependencytrack.org
https://trivy.dev
https://github.com/openclarity/kubeclarity

https://github.com/CycloneDX/bom-examples

https://dependencytrack.org/
https://trivy.dev/
https://github.com/openclarity/kubeclarity
https://github.com/CycloneDX/bom-examples

