
How to prove the safety of
your software

conf42.com Python talk

1/51

Introduction

Hello! I am:

 Marco Verleun (marco.verleun@i-share.nl)

 Employed by i-share (www.i-share.nl)

 Devops/GitOps/Cloud/Container/Cluster/Linux engineer (Pick one)

 Passion: Secure K8S clusters (air-gapped) running secure containers

3/51

Short agenda

During this talk I want to share with you how to reveal the safety of your code without
revealing the application logic.

And I hope to create a bit more awareness about the environment in which your
application will be running.

Let's have a look at a different industry with similar challenges...

4/51

6/51

From code to production

Previous part | Back to table of contents | Next part

7/51

From code to production
It starts with the code...

8/51

From code to production
It starts with the code...

Which gets deployed inside/on:

An appliance
A host
A container

Or is reused as an module.

9/51

A (random) app step by step: worker.py

Let's explore what happens to an app (written by Jerome Petazzo) which will run inside a
container. The source code can be found here: worker.py

We'll see that the number of CVE's will increase as the code moves on during the build
process from app to container image.

We will not focus on the application logic, only on the safety.

We want to assure our customers/users/ops collegues that the code does not contain any
critical CVE's.

How can we do this?

10/51

https://github.com/jpetazzo/container.training/blob/main/dockercoins/worker/worker.py

How is this done in the food industry?

Let's first look at how the food industry is doing this.

11/51

12/51

Food safety

Previous part | Back to table of contents | Next part

13/51

Food safety

Would you consume this?

14/51

Or this?

15/51

It probably depends...

A blank container is for the adventurous amongst us and might be delicious.

Other people might be more interested in nutritious facts.

16/51

It is nice to know what's inside

It is nice to know what the contents of a product are before you decide if you want to
consume it.

Food labels are ment to do this without revealing a recipe.

17/51

Have a look at this
18/51

Why not do the same with our

Hardware

Software

Saas solutions

etc.

19/51

...BOMs are there to help

Have a look at https://github.com/CycloneDX/bom-examples

We focus on SBOM during this talk.

20/51

https://github.com/CycloneDX/bom-examples

21/51

Why use SBOMs?

Previous part | Back to table of contents | Next part

22/51

Why use SBOMs?
Do you want to be in control of your software?

Let's see some reasons why you want to use SBOM's.

23/51

Did you see this?
24/51

Was your app affected?

If so:

How did you know?
How long took it to figure it out?

25/51

Was your app affected?

If so:

How did you know?
How long took it to figure it out?

SBOM's are extremly useful in these situations...

Look at this:

26/51

Like food labels SBOMs tell you what's inside
27/51

Example SBOM snippet
28/51

More and more you can download them upfront
29/51

And analyze them before you install something
30/51

31/51

Back to our app: worker.py

Previous part | Back to table of contents | Next part

32/51

Back to our app: worker.py
Let's follow our app from code to deployment in a container.

During each step we'll analyze the software and show some highlights.

33/51

Step 1: The code
34/51

Shipping the app.

We will distribute our app in a docker container.

The following base images are used to see which would be the best image for our app. We
have already determined that the app will run fine with all the mentioned images:

python:alpine
python:3.9.18-slim
python:latest

35/51

Building the container images

The container build is done with a small . The only thing that changes is the
 line where different base images are specified:

36/51

Build result

The build result is as follows:

37/51

SBOM creation

SBOM's are create from the source code and the images for further analyses. The tool used
is , but it could have been another tool as well.

Analysis is done with because it produces output that fits nice in this presentation.

Let's see how each step adds vulnerabilities. Note that the number of reported CVE's was
correct at the time of writing. Quite likely more CVE's have been discoverd since then.

38/51

Source code analysis:

The source code is quite clean. Only one CVE is reported:

✔
✔
├──
└──

39/51

Our first image based on python:latest

This is the most tempting image. It seems to be very complete, but maybe it contains to
much?

✔
✔
├──
└──

Wow... We went from only 1 CVE to 1700...

40/51

Can we do better: python:3.9.18-slim

A slim image with more than enough to run our application, but much less than
python:default.

✔
✔
├──
└──

That's already a huge difference. Especially when you pay attention to the critical and high
rated CVE's

41/51

Let's try one more image: python:alpine

✔
✔
├──
└──

42/51

Summary

The scores are shown in the table below.

Source Critial High Medium Low
worker.py 0 0 1 0
python-latest 21 359 519 73 low
python:3.9.18-slim 1 11 28 3 low
python:alpine 0 1 18 0 low

Any idea which image I prefer to deploy?

43/51

Storing SBOM files

If you store these SBOM's files you can quickly evaluate if new CVE's are introduced
without scanning every component or image again.

Or you can store them in a database like which will periodically
evaluate the vulnerabilities and, if configured, send you notifications when your attention
is required.

44/51

Distributing SBOM files

The federal US government expects vendors to provide SBOM files prior to purchasing
software or appliances. And they are not alone.

On you'll see them appear as well, waiting for you to download them.

Even the new standard for container registries allows you to store SBOM information. The
 command can do this as well.

45/51

Final words

When working with SBOM tools make sure you're using good ones. When in doubt
compare tools and see if the meet your needs. Some are good for source code, others can
only identify os components and some can do both. Not all are equally good...

46/51

47/51

Interesting links

Previous part | Back to table of contents | Next part

48/51

Interesting links
By far not complete, but check this out:

Generating SBOMs

https://github.com/kubernetes-sigs/bom

https://github.com/anchore/syft

https://docs.docker.com/engine/sbom/

https://github.com/ckotzbauer/sbom-operator

https://github.com/microsoft/sbom-tool

49/51

https://github.com/kubernetes-sigs/bom
https://github.com/anchore/syft
https://docs.docker.com/engine/sbom/
https://github.com/ckotzbauer/sbom-operator
https://github.com/microsoft/sbom-tool

Storing SBOMs

https://github.com/dlorenc/sbom-oci

https://docs.docker.com/build/attestations/sbom/

https://dependencytrack.org

50/51

https://github.com/dlorenc/sbom-oci
https://docs.docker.com/build/attestations/sbom/
https://dependencytrack.org/

Analyzing SBOMs

https://dependencytrack.org

https://trivy.dev

https://github.com/openclarity/kubeclarity

https://github.com/CycloneDX/bom-examples

51/51

https://dependencytrack.org/
https://trivy.dev/
https://github.com/openclarity/kubeclarity
https://github.com/CycloneDX/bom-examples

