Aggressive LLNMs Optimization:
NMaking Them Work on Tiny
Devices

Combining Pruning, Quantization, and Architecture Trimming for
Robust Edge Deployment

Max Navrotsky / Oleksandr Giordieiev Conf42 Machine Learning 2025

Max Navrotsky Oleksandr Gordieiev
Sr. Software DSc
Engineer at @VGS

Prof of Software Engineering at
Lutsk National Technical
University

The Challenge.
Why Optimize LLM's for Weak

Devices?

Large-scale language models (LLMSs) typically require significant
computational resources, limiting their practical deployment on low-end,
resource-constrained devices.

In critical applications - including field operations, offline systems, and embedded devices -
such requirements are prohibitive.

Research Goal:

Our objective is to investigate whether aggressive model optimization technigues - such as architecture
trimming, pruning, and quantization - can enable an LLM to operate efficiently under extreme hardware
constraint.

Demonstration Approach:

To practically evaluate our optimization strategy, we use a real-world applied task:

¢ Generating ISO-compliant software requirements.

This task serves only as a structured benchmark to measure the trade-offs between model compression, resource consumption, and

output stability.

Mocdel Selection and Alternatives.

Parameters

Open Source

Optimization Potential

Notes

Very High

Proven generative
strength, highly
modifiable

DistilGPT-2

High

Pre-compressed, less
room for further
compression

GPT-Neo 125M

Similar size to GPT-2,
newer but rougher
edges

GPT-J 6B

Very Low

Too large for practical
edge optimization

OPT-125M

Medium

Good candidate, but less
mature in pruning tools

BLOOMZ-560M

Multi-lingual strength,
too large for extreme
compression

hy GPT-2?

When choosing a foundation model for optimization, we deliberately selected GPT-2. Why?

1) GPT-2 is open-source — freely accessible and widely supported within the research community.

This accessibility enables unrestricted experimentation, fine-tuning, and aggressive optimization without
encountering licensing or API limitations.

2) Secondly, GPT-2 is relatively lightweight compared to more recent large language models, particularly its 117M
parameter variant.

This smaller size facilitates efficient operation and compression on resource-constrained devices without
iImmediately compromising core generative capabilities.

3) Critically, GPT-2 has proven generative strength.

Despite its release in 2019, it consistently produces coherent, grammatically sound, and task-aligned outputs,
particularly when fine-tuned for specialized domains.

4) Finally, GPT-2 features a transparent and well-documented architecture, making it highly compatible with
optimization techniques such as pruning, quantization, and architecture trimming.
This intrinsic flexibility renders GPT-2 an ideal candidate for experiments requiring aggressive model reduction.

..S0 if we had only one model to carry with us into the forest on an old laptop
—it would beGPT-2.

The Plan

Theory

Part 1. Theory —we
describe there
theoretical concepts
that are vital for better
knowledge and
process understanding

Practical
results

Part 2. Practical
Results — we
describe there our
practical research
and notes.

Conclusion

Part 3. Conclusions — allows
us to structure everything in
accurate summary of things
that we achieved.

Part 1: Theory

Student Model: The

Core Iclea Main idea:

Student Model Smaller, Faster, Specialized.

Compressed version of a larger "Teacher" model
Fewer parameters » layers, neurons, heads are reduced
Layers Optimized aggressively: Pruned, Quantized, Architecture Trimmed

Focused on ONE task: ISO-standard Software Requirements generation

Neurons — =~ Inputs

=

Parameters > WWeights

Metrics &t Optimization Nlethods

How do wwe measure success?
¢ Perplexity — Model accuracy (lower is better)

¢ CPU & NMlemory Usage — Critical for low-resource devices
¢ Inference Speed — Faster responses

¢ Model Size — Smaller is always better for wweak devices

Gieneral pattern: smaller / faster === better. (usually)

Metrics & Optimization Nlethods

Types of Optimization:

. Non-Aggressive Methods
Knowledge Distillation: Student mimics Teacher closely,
minimalchanges.

. Aggressive Methods
Architecture Trimming: Reducing layers & neurons.
Pruning: Removing less important parameters.
Quantization: Changing weights from float32 -» INTS.

Metrics & Optimization Methods:
Architecture Trimming

Main Concept: "If it's too big—make it smaller."

Student Model Imagine your model as a building. The original model is like a skyscraper—
lots of floors(layers), many rooms (neurons).
Architecture trimming = removing unnecessary floors and rooms.
Result: smaller, faster model that's easier to run on weak hardware.

What Exactly We Optimize:
Layers: We reduce the number of processing stages (transformations) inthe model.
Neurons: \We decrease the number of computational units per layer.

Layers Hidden dimensions: We shrink the size of internal
representations(embedding and intermediate states).

=

Parameters > Weights ® Glossary:

Layer: A step or stage in neural network processing.
Neuron: A small computational unit insicde a layer thatperforms calculations.

Metrics & Optimization Methods:
A Pruning

Main Concept:

"If it's not important — cut it off."

Think of your model like a tree, where each branch represents a connection between neurons, and each branch has a weight (parameter).
Some branches are critical for the tree's health (model's performance), others barely contribute.

Pruning = cutting away the weakest, least useful branches (lowest-weighted connections). What Exactly We Optimize:

Weights (Parameters):

We remove connections (weights) that have the smallest absolute values.

These small weights have minimal influence on the neuron's output and on the model's decision-making process.

Indirectly, Neurons:

If pruning removes most incoming/outgoing connections to a neuron, that neuron effectively becomes inactive (and can later be
removed entirely in deeper optimization stages).

Student Nodel

Layers / Inputs
\ Neurons

T—\Parameters = Weights

M Glossary:
Weights (Parameters): Numbers that determine the strength of connectionsbetween neurons.
Pruning: Technique to remove unnecessary or weak connections withoutharming model performance.

Metrics & Optimization Nethods:
2 Quantization

Main Concept: "If precision isn't critical, why use heavy tools?"

Imagine carrying water:

Float32 (original weights) = huge bucket (very precise, but heavy).

INT8 (quantized weights) = smaller bucket (less precise, but lighter and faster to carry).
Quantization = changing big heavy weights (Float32) into smaller lightweight ones (INTS8).
Result: faster calculation, less memory usage, slightly less precise—but usually still good enough.

VWhat Exactly WWe Optimize:

\Weights:

Instead of using 32-bit floating-point numbers for each parameter, we store them as 8-bit integers.

Model size:

Quantization reduces the memory needed to store weights by 4x.

Computation speed:

CPUs and some hardware accelerators can perform 8-bit operations much faster than 32-bit floating-point operations.

Student Model
Inputs

Layers /
\ LG \Parameters

— Weights

Metrics & Optimization NMethods:
4 Knowledge Distillation (Non—-Aggressive)

Main Idea: "Learning by imitation, not reinvention."

Imagine a student copying notes from an experienced teacher. Teacher model = original, complex model.
Student model = simpler, smaller model learning from the teacher’'s outputs.
Distillation = student tries to copy exactly how teacher behaves, without drastic changes.

Good if you have resources, but fails if you aggressively reduce size too much.
So, its VERY important that student's model architecture is the same or almost the same as teacher's one.

What Exactly WWe Optimize:

@ Knowledge Representation:
Instead of optimizing the model's architecture or its parameters directly, distillation optimizes how knowledge is

encoded within a smaller model.

. Training Targets:
The student model learns not just from raw labels (as in standard supervised learning), but from the teacher’'s soft
outputs (probability distributions), which contain richer information about task relationships.

Parameter Efficiency:
Through imitation, the student compresses essential knowledge into fewer parameters without necessarily needing to

match the teacher’'s size.

Student Nlodel

\

Layers

Inputs
\ /

Neurons
—\pParameters —> WWeights

M Glossary:
Teacher Model: The larger, original modelwith lots of knowledge and parameters.

Student Model: Smaller model, learning bymimicking the teacher.
Distillation: Training method where thestudent tries to copy the teacher’s behavior.

Metrics & Optimization Nlethods:
Gieneral methods comparison

Impact on
Type Complexity Impact on accurg speed & size
Architecture Fewer layers
Trimming and neurons

Float32 - INTS,
lighter weights

Quantization

Removes
unnecessary
parameters

Knowledge Teacher-student
Distillation imitation

Part 2: Practical
research

Order of experiments

This part is split into severalsteps:
1. Baseline — Fine-Tuned GPT-2
. Architecture Trimming Only
. Distillation
. Pruning
. Quantization
. Combined: Trimming +Pruning + Quantization

Fine-tuning GPT-2

Architecture Trimming

\

Pruning

O O ;A WO

—

Quantization

And Later as a Final Result:Comparison Giraphs andKeyObservations

Before Fine-Tuning — Raw GiPT-2

® Pre-trained GPT-2 (117M) without fine-tuning
Not specialized — generic language understanding
Vv Struggles with task-specific phrasing & structure

Before Fine-Tuning — Raw GiPT-2

i Performance Snapshot

B Use Case Example Prompts (Gienerated):
Prompt: The software must be able to

_ Output: The software must be able to
Perplexity ~1.02 understand how the music and weather
influence the morning.
CPU Usage ~45.10%
Prompt: User authentication must include
Memory Usage |~980.83 MB Output: User authentication must inclucdle
the ability to enjoy your favorite celebrities.
Inference Speed |~0.14 sec/gen
Prompt: The system must provide real-time
Model Size 510 MB Output: The system must provide real-time
representation of emotional truth.

Step 0: Baseline — Fine-Tuned GPT-2

¥ No optimizations applied

 Model is fine-tuned on ISO-compliant software requirementdataset
@ Full GPT-2 architecture (“IM17Nl params)

& Acts as our reference point for comparisons

B Use Case Example Prompts (Gienerated):
Prompt: The software must be able to
Output: The software must be able to 110,000 transactions per second.

Prompt: User authentication must include
Output: User authentication must include user credentials before
granting access.

Prompt: The system must provide real-time
Output: The system must provide real-time notifications.

i

After Fine-Tuning —

@ Performance Snhapshot

Rawv GIPT-2 Model

Value
Perplexity ~1.02
CPU Usage ~45.10%
Memory Usage |~980.83 MB

Inference Speed |~0.14 sec/gen

.-*—""‘--'-a'

‘--__,.....r-

a—

: / Model Size ~510 MB

tuned GPT-2
Model

Value

042,83 MB
~0.12 secl/gen

Step 1: Architecture Trimming

® Removed half of GPT-2's layers and reduced hicdden size
® From 12 - 6 layers, 768 > 384 dimensions, 12 - 6 heads
@® Same inputs, lighter architecture, faster execution

@; How did we pick which layers to trim?

@ Layer Selection Strategy:
We removed layers symmetrically from the center, preserving:
Bottom layers — for basic syntax & token-1level understanding
Top layers — for higher-level structure and output composition
This balanced trimming helps maintain both low-level and high-1level process:l.n
(But to be honest, trimming evenly usually works well — random trimming :l.s
stable,but not always worse.)

Architecture Trimming

@ Performance Snapshot

Architecture-trimmed

GPT-2 Model X Gieneration Examples:

m m Prompt: The softwware must be able to
Output: The softuwware must be able to
10,000 transactions per secondl.
Prompt: User authentication must include
Output: User authentication must
~1025.50 MB include user credentials before access.
Prompt: The system must provide real-time
Gipben Output: The system must provide
e ' m real-time notifications.

Raw GIPT-2 Nlodel

CPU vs. Memory — The Optimization Tradeoff

¥ When we reduce CPU usage, we often increase RANM usage

Optimizations like quantization and layer trimming reduce processing time
But they can increase intermecdiate tensor sizes, or cause repetition thatneeds
more cache

® Memory is fast, CPU is expensive — especially on weak devices

? Why This Matters:

@ CPU time = energy cost

On battery-powered or embedded devices,
CPU is the biggest power draw

@ RAM is more available but not unlimited
Cheap to access, but limited

on old laptops or microcontrollers

CPU vs. Mlemory — The Optimization
Tracdeoff

1) Larger intermediate tensors:Optimized
models may increaseactivation sizes to

® RAM Usage maintain numericalstability.
1200 / 2) Recomputation avoidance: Tosave CPU
1000 —— - effort, intermediate resultsare cached in
300 T RAM instead of beingrecomputed.
600 3) Batch processing overhead:Parallel
A0 execution of operationsincreases temporary
500 memory usageduring inference.
@ =
«/Q/ (@é Q’)é (\Q)b ‘O_Q)é (\Q)b
s & & & & &
% \s QO 'e)
Q\‘a@ & @ > O

Distillation — WWhen It Breaks

Student model trained to mimic a bigger Teacher model
But the student is too small to understand the teacher
Combined with architecture trimming - catastrophic failure

® What Went Wrong?

Student doesn't have enough layers/neurons to "understand" teacheroutputs
Loss doesn't converge — student starts repeating or hallucinating
Compression + distillation = incompatible when capacity is too low

Distillation — WWhen It Breaks

Student Model Collapse:
J 0 3 4 5 - - The teacher model has a full set ofneurons
to process and representcomplex knowlecdlge.
. The student model, being

aggressivelytrimmed or pruned, lacks
enoughneurons to match and mimic all
criticalpathways.

2 2
M ' . As a result, some knowledge pathwaysare
lost entirely — the student
cannotreconstruct or imitate them.
1 ? 3 ? 5 ? 7 . This leads to hallucinations
g G G (generatingnonsense) and repetitions
(getting stuckin loops).

As a result we finish in critical failure point.

Distillation — \When It Breaks

® Performance Snapshot

Raw GPT-2 Model Distilled GPT-2 Model
(after architecture trimming)

T
e

B Broken Gieneration Examples:
Prompt: The software must be able to
Output: The software must be able to
to to to to to to to to to...

Prompt: User authentication must
include

Output: User authentication must
include must must must must must
must must...

Prompt: The system must provide

Inference Inference —ti
Speed ~0.14 sec/gen ~0.06 sec/gen TR
pee Speed Output: The system must provide
real-

Model Size ~510 VB Model Size ~440 MB

timetimetimetimetimetimetime...

Pruning — Cut the Branches, Keep the Brain

“\. We remove parameters that have low or no
contribution

@ NModel learns to ighore them during training
Pruning = deleting those "dead weights"

¥ Architecture stays the same — just fewer active
connections

Why It Works:

Many weights in a large model are close to 2zero
Removing them has little impact on output
Less memory & faster computation — but only slightly

@, How We Choose Weights to Prune:

We apply L/1-unstructured pruning — this \ ' ,
means:

We rank all weights by their absolute value N " 4
Then remove the smallest ones (those closest to
2ero) - =

Example: amount = 0.4 - we keep only 60% of
the strongest weights

?® Think of it like muting the quietest voices in
a nhoisy room — the important signals still
come through loud ancdclear.

Pruning — Cut the Branches, Keep the Brain

® Performance Snhapshot

Raww GPT-2 NModel

Perplexity

CPU Usage
Memory Usage
Inference Speed

Model Size

Value

~1.02
~45.10%
~980.83 MB
~0.14 secl/gen

~510 MB

Pruned GIPT-2 Nlodel

Perplexity

CPU Usage
Memory Usage
Inference Speed

Model Size

~33.80%

~1029.31 MB

~0.08 sec/gen

Output Examples:

Prompt: The software must be able to
Output: The softwware must be able to
10,000 transactions per second.

Prompt: User authentication must
include
Output: User authentication must
inclucde

Prompt: The system must provicde real-
time

Output: The system must provide
real-time notifications.

Quantization — Big Giains with Small Numbers

© Converts model weights from float32 -» intS
@ Float32 = very precise but heavy

® INTS = less precise but much lighter » faster inference,
less CPU load

¥ No architectural changes needed
K Performed after fine—-tuning and pruning

orocess 8-bit math much faster than 32-bit
RAM used per number

e i @ Extra Glossary Note:

m' ___‘;g-quantlzatlon' Quantization applied to a fully trained model (common & easier)
; T (Quantlzatlon-Aware Training): A more complex method we did not use

antization —.-.~_,:i.g Giains with Small Numbers

"'" *.Raw GPT-2 Model Quantified GPT-2 Model

Prompt: The software must be able to

gg Output: The software must be able to 10,000

transactions per second.

. Prompt: User authentication must include

‘ Memory Usage |~994.45 MB Output: User authentication must inclucde
Prompt: The system must provicde real-time

Output: The system must provicle real-time

Combined Optimization — Our Best Result

Trimming + Pruning + Quantization = ¥

@ We apply all methods in the right order:
Fine-Tune GPT-2 for one task (ISO requirements)
A Trim model to 6 layers, 384 neurons
A Prune 40%% of smallest weights (L1)
22 Quantize to INTS for CPU efficiency

® \\Ve don't use distillation at all:
It just cdoes not stack with aggressive methods combined above.

® In this case there is no methods that will allow distillation work
with aggressive methods — as architecturedifference is too drastic.

Combined Optimization — Our Best Result

® Performance Snapshot

Raw GIPT-2 NModel

Perplexity

CPU Usage

Memory Usage

Inference Speed

Model Size

Value

~1.02

~45.10%

~980.83 MB

~510 MB

GPT-2 Model optimized
with combined methods.

Value

Perplexity

CPU Usage ~22.00%

Memory Usage |~1135.25

| Inference Speed |~0.0306 sec/gen

~0.14 sec/gen |

Model Size ~115.74 MB

Output Examples (Still Crystal Clear):
Prompt: The software must be able to
Output: The software must be able to
10,000 transactions per second.

Prompt: User authentication must
include

Output: User authentication must
include user credentials before granting
access.

Prompt: The system must provide real-
time

Output: The system must provide real-
time notifications.

Combined Optimization — Our Best Result

@ CPU Usage
=20 Optimized Student model reduces
CPU load by almost half compared to
raw GPT-2.

This makes it significantly more
suitable for battery—powered or
CPU-only devices, where energy
efficiency is critical.

Vv Less CPU - faster response times +
lower energy cost

Raw GPT-2 Combined Optimization

Combined Optimization — Our Best Result
® Memory Usage

1200 While the Student model uses less CPU, it

requires slightly more RAM due to
architectural changes and optimization
overhead (like intermediate tensor sizes
during quantization).

1000

800 A Trade-off: Lower CPU cost comes with a
moclest RAM increase
500 Still acceptable on most low-end laptops
or embecdded boards
400
200
%)

Raw GPT-2 Combined Optimization

Combined Optimization — Our Best Result
@ Perplexity

1.0 Despite aggressive optimization, both

models maintain the same perplexity
(~1.03).

This confirms that fine-tuning
protects output quality, even after
trimming, pruning, and guantization.
¥ Optimization # degradation — if
fine-tuning is done right

1

0.8

0.6

0.4

0.2

0.0 S
Raw GPT-2 Combined Optimization

Combined Optimization — Our Best Result
@ Model size

600

500

400

300

200

100

Raw GPT-2

Combined Optimization

Description:

Model size dropped from 490NMB -
TMSMB, making it much easier to store,
transfer, and deploy — especially in
offline environments (USB, Iol,
airgapped systems).
® Smaller model, same brain

Part 3: Conclusion .

If These Nlethods Are So Giood...
Why Not Always Use Them?

“If quantization, pruning, and trimming work so well — why aren't they just applied to all
models out-of-the-box?2"

Answer:
Generic models aren't built to survive heavy surgery.

¥ Fine-tuned models are.

® Why Fine-Tuning Matters

« Fine-tuning aligns the model to a single, atomic task
- That task-specific focus makes the model resistant to aggressive compression

- Out-of-the—box models are generalists - trying to do everything = fragile

& Our Case:

We trained the model to generate ISO-style software requirements — one narrow, well-
structured task > easy to compress, hard to break.

If These Methods Are So Giood... WWhy Not Always Use
Them?

Resistance — WWhy Some NModels Survive Optimization Better

I} Model Resistance = How well a model maintains output cquality after
aggressivecompression

@ High Resistance: e
Fine-tuned for one clear task (e.g., ISO requirement era
Strong internal sighal - low dependency on "’ h:
Quality drops slowly even with heavy pruning or --
* Lowv Resistance:
Gieneral-purpose model (chat, summarization, -
Many overlapping skills - higher fragility | :
Small optimization = sharp drop in performanc'é?

I1f These Mlethods Are So Giood... WWhy Not Always

Use Them?

® Raw GPT2 ©® Fine-Tuned

10
38
@)
4
2,
@

.\/(\C’? : $O7 .,»oo obo"
& R > N
{.»((\ Q<){:ﬂ/ ((\Qv
X0 O S
s S %
\)g Q’ "\;(\
b o
| 5’& cP

The same optimization methods produce
dramatically different results depending
on the model.

¢ Fine-tuned models remain stable —
perplexity grouwus slowly.

¢ Gieneral—-purpose models break fast —
perplexity skyrockets.

* Why?

Fine-tuning focuses the model on a single
task, reducing internal noise.

Gieneral mocdels are too broad — even small
cuts disrupt everything.

¥ Optimizations work best when the model
knows what it's supposed to do.

Fine-Tuning: The Most Powerful Optimization of All

We talk a lot about trimming, pruning, and quantizing...
But what enables all of it to work?
Fine—-tuning. ® Why Fine-Tuning Is Key:
It transforms the model into a specialist
Removes ambiguity -» less reliance on full architecture
Makes the model more resistant to degracdation
Enables combining aggressive methods without collapse
Without Fine-Tuning:
Pruning breaks meaning
Quantization introduces noise
Trimming deletes critical reasoning paths

With Fine-Tuning:
Everything stays coherent — even at 75% compression

"Fine—tuning isn't just an extra step — it's what makesoptimization possible.”

Final Takeaways & Terminology Recap

7. Main Points to Remember:

@ Fine-tuning is the true enabler — it makes compression possible without
collapse

A Architecture Trimming reduces depth and size

‘A Pruning removes low-impact weights

52 Quantization boosts CPU efficiency

* Distillation fails when applied to aggressively minimized students

& Resistance is key: fine—-tuned models resist degradation far better than

general models

"We didn’'t just shrink a model — we built a focused, efficient specialist.
And fine—-tuning made it all possible.”

Thank You!

