
Event-driven Architecture:
Orchestrating Cloud Native Workflows
Md. Mostafa Al Mahmud

AWS Community Builder (Serverless)

Software Engineer, Brain Station 23 PLC



Md. Mostafa Al Mahmud
https://mdmostafa.com/

https://www.linkedin.com/in/md-mostafa/

https://twitter.com/md__mostafa

Software Engineer @ Brain Station 23 PLC

https://mdmostafa.com/
https://www.linkedin.com/in/md-mostafa/
https://twitter.com/md__mostafa


Md. Mostafa Al Mahmud
https://mdmostafa.com/

https://www.linkedin.com/in/md-mostafa/

https://twitter.com/md__mostafa

Worked in the projects of some valuable 
brands

https://mdmostafa.com/
https://www.linkedin.com/in/md-mostafa/
https://twitter.com/md__mostafa


Today’s Agenda
● Event-driven architecture overview and key concepts
● Core benefits of EDA and why to use it
● Common usage patterns in EDA
● Orchestration vs Choreography 
● Considerations while building an EDA
● Best practices
● Demo - Error Handling
● Helpful resources



EDA - Powering Agility and Scalability

● Events are inclusive in modern applications
● EDA drives innovation across industries
● A central point to modern applications 
● Communication between services and 

development teams
● Many comprehensive toolkits availability



Core Values of Event-Driven Architectures

● Independent feature build and 
development

● Enhanced Scalability and Resilience
● Effortless feature integration in the current 

app
● Loose coupling and modularity 
● Asynchronous processing



Why to Use EDA

● Real-time updates
● Effortless scaling
● Targeted communication
● Simplified integration
● Security and privacy
● Minimize resource utilization



Key Concepts of Event-Driven Architectures

There are several building blocks 

● Events: Signals of state changes
● Immutable and observable
● Producers: Publish events 
● Consumers: Downstream components that 

react to events
● Event Brokers: Mediate communication

○ Event Routers: Push events to targets
○ Event Stores: Consumers pull events



Tight Coupling vs. Loose Coupling

● Drawbacks of tight coupling
○ Development Challenges
○ Scalability issues
○ And so on

● E-commerce Example: Tightly coupled 
services (orders, billing, shipping, inventory) 
create a fragile flow



Tight Coupling vs. Loose Coupling

● Loose coupling: the power of Events



Idempotency

● Have no unintended consequences upon 
retries

● Crucial concept for EDA due to inherent retry 
mechanisms

● Techniques for achieving idempotency:
○ Building idempotent services.
○ Utilizing idempotency keys in events.



Common Patterns of EDA

Point-to-Point Messaging

● Producers send messages to a single 
consumer.

● Messaging queues serve as event 
brokers.

● Messages persist until consumed, 
ensuring reliability.

● "Dumb pipes" in microservices 
communication



Common Patterns of EDA

Publish-Subscribe Messaging

● Producers send the same message to one 
or many consumers.

● Utilizes event routers instead of queues.
● Generally lacks event persistence.
● Event bus (another event router type)



Common Patterns of EDA

Event streaming

● Continuous flows of events or data
● Consumers typically poll for new events
● Event streams can be processed 

individually or collectively over time.
● Data streams interpret data over time, 

often used for real-time analytics or data 
persistence.



Common Patterns of EDA



Common Patterns of EDA

Choreography

● Ideal for communication between Bounded 
Contexts.

● Producers focus on event delivery 
(fire-and-forget).

● Event schema ensures message clarity.
● Reduces dependencies between contexts 

(loose coupling).
● Use EventBridge as event bus https://martinfowler.com/bliki/BoundedContext.html



Common Patterns of EDA

Orchestration

● Manages service integration sequence
● Maintains application state for 

complex workflows
● Handles errors and retries 
● Use AWS Step Functions, Amazon 

MWAA



When to Use Choreography and Orchestration Together



When to Use Combining Patterns
Fan-out: Distributing a single event to multiple subscribers



When to Use Combining Patterns
Event Filtering & Routing: Directing events to specific targets



When to Use Combining Patterns
Event and Message Buffering



When to Use Combining Patterns
Workflow Orchestration

https://aws.a
mazon.com/bl
ogs/compute/i
ntroducing-th
e-amazon-ev
entbridge-ser
vice-integratio
n-for-aws-ste
p-functions/



Step Functions

● Serverless orchestration service for EDA 
workflows

● Visually define workflows
● Workflow components:

○ State machines: entire workflows
○ States: individual steps
○ Task states: utilize other AWS 

services (e.g., Lambda functions) 
to perform tasks

● Standard vs. Express workflows
https://catalog.us-east-1.prod.workshops.aws/wo
rkshops/9e0368c0-8c49-4bec-a210-8480b51a34
ac/en-US/development/error-handling/step-4



Step Functions - Use Cases

Dynamic Parallelism

Function orchestration
Error handling Parallel processing

Human in the loop

Branching

https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html



Demo - Error Handling



Best Practices of EDA

● Event identifications with event storming
● Naming convention
● ECST events
● Notification events
● Conformist pattern
● ACL
● OHS
● Event-first thinking
● Idempotency
● Ordering (order/unorder events)



Resources
● https://aws.amazon.com/blogs/compute/introducing-the-amazon-eventbridge-service-integrati

on-for-aws-step-functions/
● https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is-how-it-works-concepts.

html
● https://d1.awsstatic.com/SMB/aws-modernization-intro-to-eda-guide-2022-smb-build-websites-

and-apps-resource.pdf
● https://aws.amazon.com/event-driven-architecture/
● https://theburningmonk.com/2020/08/choreography-vs-orchestration-in-the-land-of-serverless/
● https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
● https://catalog.us-east-1.prod.workshops.aws/workshops/9e0368c0-8c49-4bec-a210-8480b51

a34ac/en-US/development/error-handling
● https://d1.awsstatic.com/psc-digital/2023/gc-300/build-eda-on-aws/Build-EDA-AWS-eBook.pdf

https://aws.amazon.com/blogs/compute/introducing-the-amazon-eventbridge-service-integration-for-aws-step-functions/
https://aws.amazon.com/blogs/compute/introducing-the-amazon-eventbridge-service-integration-for-aws-step-functions/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is-how-it-works-concepts.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is-how-it-works-concepts.html
https://d1.awsstatic.com/SMB/aws-modernization-intro-to-eda-guide-2022-smb-build-websites-and-apps-resource.pdf
https://d1.awsstatic.com/SMB/aws-modernization-intro-to-eda-guide-2022-smb-build-websites-and-apps-resource.pdf
https://aws.amazon.com/event-driven-architecture/
https://theburningmonk.com/2020/08/choreography-vs-orchestration-in-the-land-of-serverless/
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://catalog.us-east-1.prod.workshops.aws/workshops/9e0368c0-8c49-4bec-a210-8480b51a34ac/en-US/development/error-handling
https://catalog.us-east-1.prod.workshops.aws/workshops/9e0368c0-8c49-4bec-a210-8480b51a34ac/en-US/development/error-handling


Be connected with me



Thank you


