
Addressing
Security Concerns in
Every Stage of the Software Supply Chain

Melissa McKay, Developer Advocate, JFrog

Background - Melissa McKay

@melissajmckay

linkedin.com/in/melissajmckay

▪ Developer!
▪ Speaker / Developer Advocate
▪ Author: Devops Tools for Java
Developers
▪ Java Champion
▪ Docker Captain

The Application Journey…

JFROG & NGINX Series

Episode #1: The One Where We Planned

Episode #2: The One Where We Set Up

Episode #3: The One Where We Considered Security

Episode #4: The One Where We Deployed

Episode #5: The One Where We Updated

Episode #6: The One Where We Observed

JFROG & NGINX Discussion Series

Episode #1: The One Where We Planned

Episode #2: The One Where We Set Up

Episode #3: The One Where We Considered Security

Episode #4: The One Where We Deployed

Episode #5: The One Where We Updated

Episode #6: The One Where We Observed

Security through Obfuscation

● Theft of Private
Customer and/or
Company Data

● Loss of Money

● Loss of Credibility

● March through July of 2017
● $1.4 billion in cleanup costs

and $1.38 billion in
consumer claims

● 143 million customers

According to Stephen Magill, VP of product
innovation at Sonatype:

● ~70,000 open-source projects use
log4j as a direct dependency

● ~ 174,000 use it as a transitive
dependency

MOVEit Transfer Vulnerability (Progress)

● June 1st - MOVEit hack, affecting Zellis, British Airways, BBC and
others

● July 20 - PokerStars Data Breach (online poker - 110,000 users
exposed)

● August 11 - IBM MOVEit Data Breach (4.1 million patients in Colorado)

The global average cost of a data breach in 2023
was USD 4.45 million, a 15% increase over 3 years.

Cost of a Data Breach Report 2023, IBM

AS A DEVELOPER,

IT IS MY RESPONSIBILITY

TO WRITE CODE THAT IS SECURE.

Essay: https://owasp.org/www-community/How_to_write_insecure_code

OWASP (Open Web Application Security Project) Joke Essay

▪ Always use default deny Apply the principle of “Default Deny” when
building your application. Deny that your code can ever be broken, deny
vulnerabilities until there’s a proven exploit, deny to your customers that
there was ever anything wrong, and above all - deny responsibility for
flaws. Blame the dirty cache buffers.

▪ Secure languages Pick only programming languages that are completely
safe and don’t require any security knowledge or special programming to
secure.

▪ Mix languages Different languages have different security rules, so the
more languages you include the more difficult it will be to learn them all.
It’s hard enough for development teams to even understand the security
ramifications of one language, much less three or four. You can use the
transitions between languages to hide vulnerabilities too.

▪ Rely on security checks done elsewhere It’s redundant to do security
checks twice, so if someone else says that they’ve done a check, there’s no
point in doing it again. When possible, it’s probably best to just assume
that others are doing security right, and not waste time doing it yourself.
Web services and other service interfaces are generally pretty secure, so
don’t bother checking what you send or what they return.

▪ Trust insiders Malicious input only comes from the Internet, and you can
trust that all the data in your databases is perfectly validated, encoded,
and sanitized for your purposes.

▪ Code wants to be free! Drop your source code into repositories that are
accessible by all within the company. This also prevents having to email
those hard-coded shared secrets around.

Cross Site

Scripting

SQL Injection

Cross Site
Request Forgery

Insecure
Cryptographic

Storage
LDAP Injection

Coding Safely: Developer Education

Software Dependencies

Code I
wrote

Other stuff
pulled in
during the
build

Dependencies
...
[INFO] +- de.codecentric:spring-boot-admin-starter-server:jar:2.5.5:compile
[INFO] | +- de.codecentric:spring-boot-admin-server:jar:2.5.5:compile
[INFO] | | +- org.springframework.boot:spring-boot-starter-webflux:jar:2.6.3:compile
[INFO] | | | +- org.springframework.boot:spring-boot-starter-json:jar:2.6.3:compile
[INFO] | | | | +- com.fasterxml.jackson.datatype:jackson-datatype-jdk8:jar:2.13.1:compile
[INFO] | | | | +- com.fasterxml.jackson.datatype:jackson-datatype-jsr310:jar:2.13.1:compile
[INFO] | | | | \- com.fasterxml.jackson.module:jackson-module-parameter-names:jar:2.13.1:compile
[INFO] | | | +- org.springframework.boot:spring-boot-starter-reactor-netty:jar:2.6.3:compile
[INFO] | | | | \- io.projectreactor.netty:reactor-netty-http:jar:1.0.15:compile
[INFO] | | | | +- io.netty:netty-codec-http:jar:4.1.73.Final:compile
[INFO] | | | | | +- io.netty:netty-common:jar:4.1.73.Final:compile
[INFO] | | | | | +- io.netty:netty-buffer:jar:4.1.73.Final:compile
[INFO] | | | | | +- io.netty:netty-transport:jar:4.1.73.Final:compile
[INFO] | | | | | +- io.netty:netty-codec:jar:4.1.73.Final:compile
[INFO] | | | | | \- io.netty:netty-handler:jar:4.1.73.Final:compile
[INFO] | | | | | \- io.netty:netty-tcnative-classes:jar:2.0.46.Final:compile
[INFO] | | | | +- io.netty:netty-codec-http2:jar:4.1.73.Final:compile
[INFO] | | | | +- io.netty:netty-resolver-dns:jar:4.1.73.Final:compile
[INFO] | | | | | +- io.netty:netty-resolver:jar:4.1.73.Final:compile
[INFO] | | | | | \- io.netty:netty-codec-dns:jar:4.1.73.Final:compile
[INFO] | | | | +- io.netty:netty-resolver-dns-native-macos:jar:osx-x86_64:4.1.73.Final:compile
[INFO] | | | | | \- io.netty:netty-resolver-dns-classes-macos:jar:4.1.73.Final:compile
[INFO] | | | | +- io.netty:netty-transport-native-epoll:jar:linux-x86_64:4.1.73.Final:compile
[INFO] | | | | | +- io.netty:netty-transport-native-unix-common:jar:4.1.73.Final:compile
[INFO] | | | | | \- io.netty:netty-transport-classes-epoll:jar:4.1.73.Final:compile
[INFO] | | | | \- io.projectreactor.netty:reactor-netty-core:jar:1.0.15:compile
[INFO] | | | | \- io.netty:netty-handler-proxy:jar:4.1.73.Final:compile
[INFO] | | | | \- io.netty:netty-codec-socks:jar:4.1.73.Final:compile

...

114
Direct and

indirect
dependencies!

7
Layers deep!

Synopsis 2023 OSSRA Report (CyRC findings from 2022)

IS IT ALL UP TO DEVELOPERS???

If developers didn’t write insecure code…
then we wouldn’t have any of these
problems!

● 18,000 customers received
an update that included
malicious code with a
backdoor

● Compromised file was
digitally signed!

Supply-chain Levels for Software Artifacts
https://slsa.dev

Dependency Confusion Attack - Package Mining

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Dependency Confusion Attack - Package Mining

AwesomeCorporateLib
1.2

AwesomeCorporateLib
6.6.6

Vulnerable
Package Manager

Developer CI/CD

???

Dependency Confusion Attack - Package Mining

AwesomeCorporateLib
1.2

AwesomeCorporateLib
6.6.6

Vulnerable
Package Manager

Developer CI/CD

!!!

Dependency Confusion Attack - Package Mining

Dependency Confusion Attack - Package Mining

x AwesomeCorporateLib
1.2

AwesomeCorporateLib
6.6.6

Developer CI/CD

Dependency Confusion
Attack

130,000 USD

Managing Open Source Dependencies

Attribution: https://xkcd.com/2347/

The Left-Pad Incident

1. Developer and kik organization couldn’t come to an
agreement on an npm package named kik

2. npm sided with the kik organization

3. Developer unpublished his kik package and 272 other
packages! One of these was left-pad

Cameron Westland stepped in and published a
functionally identical version of left-pad. v1.0.0, but many
projects were explicitly requesting v0.0.3
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code

The Left-Pad Incident

module.exports = leftpad;
function leftpad (str, len,
ch) {
 str = String(str);
 var i = -1;
 if (!ch && ch !== 0) ch = '
';
 len = len - str.length;
 while (++i < len) {
 str = ch + str;
 }
 return str;
}

Tuesday, March 22, 2016
2:30 PM Pacific Time

Container Development

1 FROM untrustedParentImage
2 RUN apt update && apt install -y \
3 somepackage \
4 oldandvulnerablepackage=0.5
5 WORKDIR /myapp
6 COPY . .
7 RUN curl -sL \
8 https://somewhere.com/script.sh | bash -
9 ENTRYPOINT [“start.sh”]

76%
Containers run as root

Sysdig 2022 Cloud-Native Security And Usage Report

(out of 3 million containers)

83%
Containers run as root

Sysdig 2023 Cloud-Native Security And Usage Report

(out of 7 million containers)

Is There Any Hope???

What Else Can We Do?

▪ Educate ourselves

▪Don’t rely solely on public repos

▪Manage dependencies!

▪Manage permissions!

▪Regularly scan your libraries & packages

▪ Keep up with maintenance

▪Optimize CI/CD processes

OWASP Resources (Cheat sheets)

OpenSSF Trio of Free Courses

The Linux Foundation: Secure Software
Development: Requirements, Design, and
Reuse

The Linux Foundation: Secure Software
Development: Implementation

The Linux Foundation: Secure Software
Development: Verification and More
Specialized Topics

What Can We Do???

▪ Educate ourselves

▪Don’t rely solely on public repos

▪Manage dependencies!

▪Manage permissions!

▪Regularly scan your libraries & packages

▪ Keep up with maintenance

▪Optimize CI/CD processes

What Can We Do???

▪ Educate ourselves

▪Don’t rely solely on public repos

▪Manage dependencies!

▪Manage permissions!

▪Regularly scan your libraries & packages

▪ Keep up with maintenance

▪Optimize CI/CD processes

What Can We Do???

▪ Educate ourselves

▪Don’t rely solely on public repos

▪Manage dependencies!

▪Manage permissions!

▪Regularly scan your libraries & packages

▪ Keep up with maintenance

▪Optimize CI/CD processes

90%
of granted

permissions
are not used

What Can We Do???

▪ Educate ourselves

▪Don’t rely solely on public repos

▪Manage dependencies!

▪Manage permissions!

▪Regularly scan your libraries & packages

▪ Keep up with maintenance

▪Optimize CI/CD processes

What Can We Do???

▪ Educate ourselves

▪Don’t rely solely on public repos

▪Manage dependencies!

▪Manage permissions!

▪Regularly scan your libraries & packages

▪ Keep up with maintenance

▪Optimize CI/CD processes

What Can We Do???

▪ Educate ourselves

▪Don’t rely solely on public repos

▪Manage dependencies!

▪Manage permissions!

▪Regularly scan your libraries & packages

▪ Keep up with maintenance

▪Optimize CI/CD processes

QUESTIONS?

@melissajmckay

linkedin.com/in/melissajmckay

Melissa McKay
Developer Advocate, JFrog

