
Tackling Flaky Tests: Strategies for Reliability in Continuous
Testing

Reasons for test flakiness
Timing dependencies

Tests that depend on timing conditions, such as delays or

waiting for an asynchronous process to complete

UI Automation timing

Automated UI testing trying to interact with a page

element which either does not exist, or is not ready.

Dependence on external services

Tests that rely on external APIs, databases, or other

services that might be unavailable or slow

Platform or environment issue

Tests that pass on one machine or configuration but fail on

another

Network connectivity

Kinda similar to ‘platform or environment issue’, but

specifically the network connection being used to

connect somewhere failing intermiently, resulting in

connectivity issues

Bad test data

Tests using randomly generated or inappropriate data as

inputs, which could result in failures

Order-dependencyTests that depend on the order of execution, often caused

by shared state between tests

Resource constraintsTests that fail due to resource limitations on the host.

CPU, memory, and stu like that

Concurrency issues

Tests involving multiple threads or processes that access

shared resources

The impact of flaky tests

● Flaky tests undermine developer confidence 🤔

● Flaky tests slow down CI/CD pipelines 🐢

● There’s a monetary value associated with a test being flaky 💸

Flaky test stats (according to ChatGPT 🤔)

● Google reports that 16% of their tests are flaky
hps://blog.mergify.com/understanding-flaky-test-meaning-developers-guide

● 60% of developers regularly encounter flaky tests
hps://blog.mergify.com/understanding-flaky-test-meaning-developers-guide

● Order dependency is a dominant cause of flakiness,
responsible for 59% of flaky tests, followed by test
infrastructure problems at 28%
hps://arxiv.org/abs/2101.09077

1: Isolate and Identify Flaky Tests

Look for
signs of

flakiness

Isolate and Identify Flaky Tests

What does flakiness look like?

● Intermient test failures without code changes

● Tests passing locally but failing in CI

● Outcome depends on non-deterministic factors like time or
environment

Look for
signs of

flakiness

Re-run
things a few

times

Utilize test
observability

tools

Isolate and Identify Flaky Tests

tl;dr

Figure out which test are actually flaky

2: Optimize Test Design and Implementation

Make your
tests

‘atomic’

Optimize Test Design and Implementation

What is an ‘atomic’ test?

● Independent - doesn’t rely on the execution of other tests

● Tightly scoped - tests a single unit of functionality

● Deterministic - avoid sources of entropy

● Performant - small and fast

Make your
tests

‘atomic’

Adopt
mocking and

stubbing

Structure
tests

hierarchically

Optimize Test Design and Implementation

The test pyramid thing

tl;dr

Invest time ensuring your tests are designed
optimally

3: Improve Test Environment Stability

Strive to
achieve a

consistent
test setup

Improve Test Environment Stability

How do I keep my build environment clean?

● Hosted/managed ephemeral runners

● Self-hosted runners (EC2, K8s etc) utilizing short-lived compute infra

● Docker 🐳

Strive to
achieve a

consistent
test setup

Try and
determine

which failures
are related to

infrastructure

Replace
external

dependencies
with mocks

Improve Test Environment Stability

tl;dr

Your test environment is crucial for reliability

4: Level-up your test management and
monitoring tooling

Integration

Level-up your test management and monitoring
tooling

Integration Observability

Level-up your test management and monitoring
tooling

Integration Observability Flaky test
detection

Level-up your test management and monitoring
tooling

Test
assignment

Test
quarantining

tl;dr

Observability is key

5: Foster a Reliability-Focused Culture

Make
unblocking

everyone
else a top

priority

Quarantining
tests is fine,
but then fix
things after

When
necessary,

swarm

Foster a Reliability-Focused Culture

Avoid silos of information

tl;dr

People and processes are as important as tools

Recap

● Figure out which tests are flaky

● Optimize test design

● Work on environment stability

● Use the best tooling for the job

● Foster a reliability culture

https://buildkite.com

