
Unlocking Observability with React and
Node.js

Mohit Menghnani,
Staff Software Engineer
Twilio

Agenda
➢ Introduction: The need for a unified view

➢ Defining Unified Full-Stack Observability

➢ Correlating Frontend and Backend Data

➢ Case Studies

➢ Tools & Best Practices

➢ Conclusion

Introduction - The Need for a Unified View

● Modern web applications (React frontend,

Node.js backend) are increasingly complex.

● Traditional monitoring often treats frontend

and backend separately, leading to blind

spots.

● Unified full-stack observability provides a

holistic understanding of application

behavior across all layers.

Defining Unified Full-Stack Observability for React and Node.js

● Monitoring the entire application stack

from the React UI to the Node.js backend

within a cohesive framework.

● Emphasizes the critical connections and

dependencies between frontend and

backend.

● Requires a single platform or tightly

integrated tools for data correlation.

● Contrasts with siloed monitoring that limits

the ability to diagnose cross-tier issues.

The Compelling Advantages of Integrated Observability

● Faster Issue Resolution: Holistic view enables quicker root cause analysis and reduces MTTR/MTTD.

● Improved Team Collaboration: Shared understanding and common platform break down silos.

● Enhanced Performance Insights: Identifies bottlenecks across both frontend and backend.

● Data-Driven Decision Making: Comprehensive data informs optimization and resource allocation.

● Proactive Issue Detection: Anomaly detection across the full stack helps prevent user impact.

Achieving End-to-End Visibility: Correlating Frontend and Backend Data

● Trace Propagation: Unique IDs generated on the frontend and passed to the backend (W3C Trace Context, sentry-trace,
traceparent).

● Correlation IDs: Unique identifiers generated on the frontend and passed to the backend.

● Session IDs: Linking frontend user sessions with backend activities.

● Log Correlation: Embedding trace/correlation IDs in both frontend and backend logs.

● RUM/APM Integration: Automatic correlation of frontend user experience data with backend traces.

● OpenTelemetry: Provides a standardized approach to context propagation.

Key Performance Indicators for Holistic Application Understanding

Implementing Distributed Tracing Across React and Node.js

● Traces: Represent the entire lifecycle of a request.

● Spans: Denote individual operations within a trace.

● Context Propagation: Linking spans using unique trace IDs carried through all operations.

● Benefit: Identify performance bottlenecks and latency issues in complex systems.

● OpenTelemetry: Standardized approach for context propagation.

● Tools: OpenTelemetry, Jaeger, Zipkin.

Case Studies

● Correlating frontend error spikes with backend API latency to identify root causes.

● Analyzing user navigation patterns leading to high backend resource consumption.

● Example:

○ Payment error on frontend traced to a timeout in a backend payment API.

○ Slow frontend page load corelated with slow backend API response for image data.

MERN stack observability benefits from unified tools and integrations.

Tooling the Unified Approach: Integrated Observability Platforms

● Datadog: Full-stack monitoring with RUM for frontend and APM for backend.

● New Relic: Integrated solutions with quickstarts for MERN stack.

● Honeycomb: Emphasizes unified analysis of telemetry data.

● Dynatrace: AI-powered full-stack observability.

● Elastic Observability: Unifies logs, metrics, and traces from various sources.

● Grafana Cloud: Frontend RUM integrated with backend data sources.

● Observe: Connects end-user experience with backend troubleshooting.

● OpenObserve: Open-source platform for logs, metrics, and traces.

● OpenTelemetry: Vendor-neutral standard for instrumentation.

Best Practices for Proactive Issue Detection and Resolution

● Create unified dashboards visualizing key metrics and traces from both tiers

● Set up alerts based on correlated frontend and backend data

● Utilize anomaly detection to proactively identify unusual behavior.

● Implement effective tagging strategies for easy data correlation.

● Establish clear observability goals and SLOs.

● Involve both frontend and backend teams in defining alerts and dashboards

Conclusion - Embracing the Future of Full-Stack Observability

● Unified full-stack observability provides faster issue resolution,
enhanced performance insights, and proactive problem
detection.

● Breaks down silos between frontend and backend monitoring.

● Enabled by modern observability tools and open standards like
OpenTelemetry.

● Crucial for maintaining system reliability, optimizing
performance, and delivering exceptional user experiences.

Thank you

