Unlocking Observability with React and
Node.js

Mohit Menghnani,
Staff Software Engineer
Twilio

Agenda

> Introduction: The need for a unified view
> Defining Unified Full-Stack Observability
> Correlating Frontend and Backend Data
> Case Studies

> Tools & Best Practices

> Conclusion

Introduction - The Need for a Unified View

Modern web applications (React frontend,
Node.js backend) are increasingly complex.
Traditional monitoring often treats frontend
and backend separately, leading to blind
spots.

Unified full-stack observability provides a
holistic understanding of application

behavior across all layers.

Frontend
Monitoring

-+

Backend
Monitoring

Full-Stack
Observability

Defining Unified Full-Stack Observability for React and Node.js

e Monitoring the entire application stack - =
from the React Ul to the Node.js backend Presentation Layer
(Frontend)
within a cohesive framework. \ /
e Emphasizes the critical connections and Jr

dependencies between frontend and Application Layer

backend. (Backend Logic)
e Requires a single platform or tightly i J, 1
integrated tools for data correlation. r 3
e Contrasts with siloed monitoring that limits Dg‘;al;,:g;r

the ability to diagnose cross-tier issues.

o

The Compelling Advantages of Integrated Observability

Faster Issue Resolution: Holistic view enables quicker root cause analysis and reduces MTTR/MTTD.

Improved Team Collaboration: Shared understanding and common platform break down silos.

Enhanced Performance Insights: |dentifies bottlenecks across both frontend and backend.

Data-Driven Decision Making: Comprehensive data informs optimization and resource allocation.

Proactive Issue Detection: Anomaly detection across the full stack helps prevent user impact.

Achieving End-to-End Visibility: Correlating Frontend and Backend Data

® Trace Propagation: Unique IDs generated on the frontend and passed to the backend (W3C Trace Context, sentry-trace,
traceparent).

Correlation IDs: Unique identifiers generated on the frontend and passed to the backend.
Session IDs: Linking frontend user sessions with backend activities.
Log Correlation: Embedding trace/correlation IDs in both frontend and backend logs.

RUM/APM Integration: Automatic correlation of frontend user experience data with backend traces.

OpenTelemetry: Provides a standardized approach to context propagation.

GET /api/user/info HTTP/1.
Host: example.com

traceparent: bf92£3577b34daba3ce929d0e0e4736-00f067aadbad02b7
tracestate: rojo-00f067aadbad02b7,congo-t6lrcWkgMzE

Key Performance Indicators for Holistic Application Understanding

KPI Name

User-Perceived
Latency

Error Rates Across
Tiers

Request Latency
(End-to-End)

Throughput

Resource Utilization

User Engagement

Metrics

Core Web Vitals

Frontend Relevance

Rendering speed, resource
loading, interactivity

JavaScript errors, HTTP errors,
unhandled exceptions

Time in browser, network to
backend

User interactions, API calls
initiated

Browser performance, memory
leaks

Page views, session duration,
conversion rates

LCP, FID, CLS

Backend Relevance

API response times, data retrieval,
server processing

Server errors, API errors,
database errors

Backend processing, database
queries, network back

API requests processed

Node.js process performance,
memory leaks, CPU

Backend impact on user behavior,
AP| usage

Backend impact on initial content
delivery

Importance for Unified Observability

Directly reflects user experience and the combined
performance of frontend and backend.

Indicates overall stability and reliability across all layers.

Provides a holistic view of the request lifecycle and
identifies bottlenecks across tiers.

Measures the application's capacity and scalability under
load.

Helps identify resource constraints and optimize
performance on both client and server sides.

Connects technical performance with business outcomes
and user satisfaction.

Essential for SEO, user experience, and perceived
performance; reflects backend's role in loading.

Implementing Distributed Tracing Across React and Node.js

e Traces: Represent the entire lifecycle of a request.

e Spans: Denote individual operations within a trace.

e Context Propagation: Linking spans using unique trace |IDs carried through all operations.
e Benefit: Identify performance bottlenecks and latency issues in complex systems.

e OpenTelemetry: Standardized approach for context propagation.

e Tools: OpenTelemetry, Jaeger, Zipkin.

Trace ID D
_—D

]

sotion]

Frontend Backend

Case Studies

e Correlating frontend error spikes with backend API latency to identify root causes.
e Analyzing user navigation patterns leading to high backend resource consumption.
e Example:

o Payment error on frontend traced to a timeout in a backend payment API.

o Slow frontend page load corelated with slow backend API response for image data.

MERN stack observability benefits from unified tools and integrations.

Tooling the Unified Approach: Integrated Observability Platforms

e Datadog: Full-stack monitoring with RUM for frontend and APM for backend.

e New Relic: Integrated solutions with quickstarts for MERN stack.

. . v . .
e Honeycomb: Emphasizes unified analysis of telemetry data. AP

e Dynatrace: Al-powered full-stack observability. wdynatrace

7]
° Elastic Observability: Unifies logs, metrics, and traces from various sources. bl
e Grafana Cloud: Frontend RUM integrated with backend data sources. ¢ fj\
Grafana gy
° Observe: Connects end-user experience with backend troubleshooting. O B S E RV E
e OpenObserve: Open-source platform for logs, metrics, and traces. \“’9

open NVe

) OpenTelemetry: Vendor-neutral standard for instrumentation. “ Telemetry

Best Practices for Proactive Issue Detection and Resolution

e Create unified dashboards visualizing key metrics and traces from both tiers %fﬁ

e Set up alerts based on correlated frontend and backend data (‘\

e Utilize anomaly detection to proactively identify unusual behavior. |£
e Implement effective tagging strategies for easy data correlation. O

e Establish clear observability goals and SLOs. @

e Involve both frontend and backend teams in defining alerts and dashboards 8"&

Conclusion - Embracing the Future of Full-Stack Observability

e Unified full-stack observability provides faster issue resolution,
enhanced performance insights, and proactive problem
detection.

e Breaks down silos between frontend and backend monitoring.

e Enabled by modern observability tools and open standards like
OpenTelemetry.

e Crucial for maintaining system reliability, optimizing
performance, and delivering exceptional user experiences.

Thank you

