The Evolution of Microservices
Architecture in Cloud-Native

Systems



What I1s Microservices Architecture?

Why is it crucial in

cloud-native

environments?
 Enables scalability,

flexibility, and faster

development cycles.

* Supports rapid deployment

and continuous delivery.

Session
Objectives:

« Understand the shift from

monolithic to microservices.

« Explore key principles and

components.

e Discuss deployment
strategies, challenges, and

best practices.




The Shift from Monolithic to Microservices

Challenges with Monolithic

Architecture

» Large codebase - Difficult

to maintain.
« Scaling issues - Scaling
requires redeploying the

entire application.

* Slower deployment cycles

5 Hinders agility and

ovation.

Benefits of When & Why to
Microservices Transition?
« Scalability - Scale services * |f your application is
Independently. growing and becoming

harder to manage.
« Agility - Teams work on
separate services.  When you need
Independent scaling for
* Fault Tolerance - Failures different components.
INn one service don't bring
down the entire system.  [f continuous deployment

and DevOps are priorities.




Key Principles of Microservices

N \

\ / \ / External Systems

Slngl.e. . Loose Coupling & Domain-Driven API-First
Re.SP?“s'b'l'ty High Design (DDD) Approach
Pré';:;}i':r\fizp) CohesionBeaudry Aligns services Services

Services should be with business communicate
SafelliefaEinfelc Independent but work capabilities for through well-
one function and

seamlessly together.

, maintainability. defined APlIs.
do it well.



Core Components of Microservices Architecture

Service Discovery

Enables services to
find and communicate
with each other

dynamically.

APl Gateway

Manages API| requests,
security, and load

balancing.

Database Per

Service

Each service has its
own database to

ensure autonomy.

Service Communication

(Sync vs. Async)

« Synchronous: REST/gRPC (real-

time communication).

« Asynchronous: Message
queues/Kafka (decoupled,
scalable).



h 4 \

kubernetes

\_ W - v

Containers &

", : Serverless & Function as CI/CD Pipelines for
upernetes :
a Service (Faas) Automated Deployment
 Docker containers « Automates testing and
encapsulate microservices. Event-driven execution without deployment.
managing infrastructure.
 Kubernetes orchestrates  Enables continuous integration

deployment and scaling. and rapid iteration.



Challenges in Microservices

Implementation

Data Consistency & Distributed Transactions

 Handling transactions across multiple services is complex.

Service Communication (REST vs gRPC vs Message Brokers)
« Choosing the right communication method impacts

performance.

Security: Authentication, Authorization, and Zero Trust
 Implementing role-based access, API security, and

encryption is critical.



Observability and Monitoring

Key Tools:

& Telemetry

221

Prometheus & Grafana OpenTelemetry

Metrics collection & visualization. Standardized observability framework.



Logging, Tracing, and Metrics

« Logging captures events.

* Tracing follows requests across services.

* Metrics provide performance insights.



Success Stories from Industry Leaders:

Uber: Migrated from Netflix: Pioneered microservices

monolithic for scalability.

L] L] L] L]
= AN\ NI/ AACAAP LA 'Fr\r ‘\HIII+\I



Best Practices & Takeaways

 Start Small & Evolve

Begin with a single service, then expand.

« Automate Everything
CI/CD, testing, and deployments should be automated.

« Design for Failure & Resilience

Implement retries, circuit breakers, and fallback mechanisms.

« Continuous Learning & Adaptation

Keep iterating based on performance and feedback.




Q&A & Closing Remarks

Microservices enhance scalability and agility.

Observability and security are critical for success.

Deployment strategies must align with business needs.



'-':lr::" Thank You 'I'.r::'-'




