
TAMING MEMORY LEAKS IN 
NODE.JS: A DEEP DIVE INTO 
DIAGNOSTICS AND SOLUTIONS



INTRODUCTION

● Hello everyone! My name is Muhammad Yasir Rafique

● I’m currently working as a Node.js Backend 

Developer at FindMyFacility.

● Featured author on DZone with an article titled 
"JavaScript Frameworks: The Past, the Present, and 

the Future."
● Over 4+ years of experience in JavaScript & Web 

backend Development



INTRODUCTION TO MEMORY LEAKS

Memory leaks occur when a program retains 
memory it no longer needs, leading to 

performance degradation. In this talk, we’ll 
explore how memory leaks manifest in Node.js 

applications and their impact on system 
resources



WHY MEMORY LEAKS 

MATTER IN NODE.JS

Node.js relies on an event-driven architecture, making it 
highly efficient for I/O-heavy applications. However, 
memory leaks can cause server crashes, slow response 
times, and even application failure, especially in long-
running processes.



SYMPTOMS OF A 
MEMORY LEAK

Common signs include increasing memory 
usage over time, slowing application 
performance, or frequent garbage collection 
pauses. Identifying these symptoms early is 
critical to maintaining application stability.



We encountered a persistent memory leak in a high-traffic 
Node.js application that caused servers to restart frequently. 

Tracking down the issue required deep analysis of the 
application's memory usage patterns over time.

REAL-LIFE EXAMPLE: MEMORY 
LEAK IN PRODUCTION



DIAGNOSING THE PROBLEM

The unique challenge lay in the infrequent 
nature of the memory leak, which only 
occurred under heavy load. Using memory 
snapshots and profiling tools, we were able 
to pinpoint the exact issue causing memory 
retention



COMMON CAUSES OF MEMORY LEAKS 
IN NODE.JS

Memory leaks can arise from unintentional 
global variables, improper closures, or retained 
references in event listeners and callbacks. 
Furtherdown, we’ll review the most frequent 
causes of leaks in Node.js applications.



USING CHROME DEVTOOLS FOR 
MEMORY PROFILING

Chrome DevTools provides a powerful memory 
profiling tool to capture snapshots, compare 
heap allocations, and identify memory leaks. 
These helps to analyze memory usage in Node.js 
apps



WORKING WITH NODE.JS BUILT-IN --
INSPECT TOOL

Node.js includes an --inspect flag that connects the 
process to debugging tools like Chrome DevTools. This 
demonstrates how to use this built-in feature to track 
down memory leaks and inefficient memory usage.



HEAP SNAPSHOTS: WHAT THEY ARE AND 
HOW TO USE THEM

A heap snapshot provides a detailed view of the memory allocations 
in your application. By capturing snapshots at different intervals, we 
can identify which objects are persisting unnecessarily, leading to 
memory leaks.



ANALYZING RETAINED OBJECTS AND REFERENCES

Memory leaks occur when objects 
that should be garbage-collected 
remain in memory. It is important 

to track retained objects and 
identify circular references or 

event listeners that keep them 
alive.



REAL-LIFE SOLUTION: FIXING THE LEAK

In our real-world scenario, the memory leak was caused 
by an improperly managed event listener that kept 
references to unused objects. The solution involved 

removing these listeners and ensuring proper cleanup 
after execution



GARBAGE COLLECTION in Node.js

The V8 engine's garbage collector automatically 
frees up memory no longer in use. However, 
understanding how it works can help avoid memory 
leaks.



USING CLINIC.JS FOR IN-DEPTH MEMORY 
DIAGNOSTICS

clinic.js is a powerful diagnostic tool for Node.js applications. It 
helps identify memory leaks, CPU bottlenecks, and slow queries. It's 

better that we should know how to use this tool effectively for 
tracking memory leaks.



MONITORING TOOLS FOR MEMORY 
USAGE

Tools like New Relic and Datadog offer real-time monitoring of memory 
usage in production environments. Using these tools can help 
proactively detect memory issues before they become critical.



BEST PRACTICES FOR PREVENTING 
MEMORY LEAKS

Preventing memory leaks in Node.js involves adopting key practices that 
ensure memory is efficiently managed. For instance, avoid using global 

variables, as they remain in memory throughout the application's lifecycle. 
Another best practice is to ensure event listeners are properly removed when 

no longer needed, especially in long-running applications.



OPTIMIZING EVENT LISTENERS AND 
CLOSURES

Event listeners and closures can be major sources of memory leaks if not 
managed properly. It's useful to optimize these elements and prevent them 

from holding onto memory longer than necessary.



TRACKING MEMORY USAGE WITH 
PROCESS.MEMORYUSAGE()

Node.js provides the process.memoryUsage() method to monitor heap and 
RSS memory. By incorporating this into application logs, we can track memory 

growth and identify potential issues before they escalate.



MEMORY LEAK DETECTION IN REAL-TIME 
SYSTEMS

Real-time systems face unique challenges when dealing with memory leaks 
due to their continuous operations. There should be well-defined strategies for 

detecting and mitigating memory leaks in high-concurrency, real-time 
environments.



FUTURE-PROOFING NODE.JS 
APPLICATIONS

As your application scales, memory leaks can become more problematic. 
Well-defined & well-structured strategies for future-proofing the Node.js 
applications, ensuring they remain efficient and scalable as they grow.



CONCLUSION AND TAKEAWAYS

Memory leaks can have a significant impact on performance, but with the 
right tools and techniques, they can be diagnosed and fixed effectively. This 

session has covered real-life examples, diagnostic tools, and best practices to 
help you tame memory leaks in Node.js.



THANK YOU!


