
Observability with 
OpenTelemetry
A comprehensive guide to understanding observability principles and 
implementing OpenTelemetry in modern distributed systems.

By Naga Murali Krishna Koneru, Technical Architect



Agenda
Understanding Observability
Foundations and key concepts

Observability In-Depth
Telemetry data types and collection methods

OpenTelemetry Essentials
Architecture, components, and implementation

Data Sources & Integration
Connecting OpenTelemetry with your ecosystem



Foundations of Observability
Telemetry Data

The automated collection and transmission of 
measurements, logs, and events from remote or 
distributed systems to a central monitoring system for 
analysis

The collected monitoring data used to locate potential 
problems in your systems.

Key DevOps Metrics

Mean Time to Detection (MTTD)

Mean Time to Resolve (MTTR)

These metrics measure how quickly teams identify and 
resolve issues.



Monitoring Methods
RED Method

Rate (requests per second)

Errors (failed requests)

Duration (response time)

USE Method
Utilization (resource usage)

Saturation (queue length)

Errors (hardware/software)

Four Golden Signals
Latency (processing time)

Traffic (request volume)

Errors (failure rate)

Saturation (system load)



Core Web Vitals
LCP
Largest Contentful Paint measures loading performance.

FID
First Input Delay measures responsiveness to user interactions.

CLS
Cumulative Layout Shift measures visual stability during loading.



Monitoring vs. Observability
Monitoring

Reactive approach

Tracks known issues

Best for monolithic systems

Shows when issues occur

Observability

Proactive approach

Uncovers "unknown unknowns"

Ideal for complex systems

Shows where, when, and why



Telemetry Data Types
Metrics
Quantitative measurements that answer "What is happening?"

Logs
Time-stamped event records that answer "What happened?"

Traces
End-to-end request journeys that answer "Where is the 
bottleneck?"

Profiles
Resource-level diagnostics that answer "Why is it slow?"



Observability in Modern Systems



Metric Collection Methods
Push Method

Applications actively send metrics to collection endpoints 
via TCP/UDP.

Example: Application pushes metrics to StatsD, which 
forwards to Graphite.

Scrape Method

Applications expose metrics for time-series databases to 
collect.

Example: Prometheus scrapes metrics from application 
endpoints.



Choosing Your Collection Method
Choose Scrape When

Using Kubernetes or dynamic environments

Preferring centralized control

Apps can expose HTTP endpoints

Choose Push When

Apps are short-lived

Real-time metrics are needed

Apps run in restricted networks



Introduction to 
OpenTelemetry

Open-Source Framework
Standardizes generation, collection, and management of telemetry data.

CNCF Project
Incubated under the Cloud Native Computing Foundation.

Key Benefits
Vendor-neutral, cross-language support, standardization.

Comprehensive Coverage
Supports logs, metrics, and traces in one framework.



OpenTelemetry Architecture
Instrumentation Libraries

Enhance applications to generate 
telemetry data.

Receivers
Collect telemetry data from various 
sources.

Processors
Manipulate and transform data 
before exporting.

Exporters
Send processed data to observability 
backends.

OTLP Protocol
Standardized protocol for transmitting 

telemetry data.

Collectors
Receive, process, and export 

telemetry data.



OpenTelemetry Collector
Central executable
Receives, processes, and exports telemetry data to multiple 
targets.

Protocol support
Works with popular open-source telemetry protocols.

Intermediary role
Acts between applications and backend analysis tools.

Key advantages
Reduces resource consumption, centralizes configuration, 
improves security.



Collector Components

Receivers
Entry points for telemetry data, 

accepting various formats.

Processors
Manipulate data before export: 
filtering, enriching, sampling.

Exporters
Send processed data to backend 
systems for analysis.



Advanced Collector Components
Connectors

Facilitate communication between pipelines

Transform between signal types

Enable multi-stage processing flows

Extensions

Enrich component capabilities

Add performance analysis

Provide authentication services



Collector Pipelines

Receivers
Listen on network 
ports to collect 
incoming data.

Processors
Modify, filter, 
enrich, aggregate 
data to optimize 
storage, reduce 
costs, and enhance 
observability.

Exporters
Send processed 
data to various 
backend systems.



OpenTelemetry Data Sources
Application 
Instrumentation
Apps using OpenTelemetry SDKs to 
send telemetry data.

Service Mesh
Traffic metrics and traces from Istio 
or Linkerd.

Node-level Metrics
Data from Kubelet about nodes and 
running pods.

Kubernetes Events
Cluster events providing insights into 
system activities.



Additional OpenTelemetry 
Sources

Logging Daemons
Fluentd and Fluent Bit collect and forward logs.

Cloud Provider Metrics
Data from AWS, GCP, or Azure services.

Probes and Health Checks
Liveness and readiness status data.

Container Runtime
Metrics about container states and resource usage.



Implementation Approaches
Auto Instrumentation

Immediate visibility

Broad coverage

Minimal development effort

Great starting point

Automatically instruments common libraries without 
extensive code changes.

Manual Instrumentation

Custom metrics

Precise control

Business-specific insights

Greater flexibility

Adding specific code to capture exactly what you need, 
when you need it.



Full Observability Stack

Visualization
Grafana dashboards and alerts

Storage
Prometheus, Loki, Tempo, Mimir

Collection
OpenTelemetry, Fluent Bit

Instrumentation
Application code with OTel SDKs



Observability Stack Components
Data flows through an integrated telemetry pipeline

Collector
Collects and forwards telemetry data from 
various sources.

Tempo
Distributed tracing system for request 
journey analysis.

Loki
Log aggregation platform for centralized 
log management.

Prometheus
Time-series database for metrics 
collection and storage.

Grafana
Web UI for visualization, dashboards, and 
alerting.

Each component handles a specific telemetry type, creating a comprehensive observability solution.



Integrated Observability 
Ecosystem

4
Key Components

Grafana, Loki, Mimir, and Fluent Bit form the core stack.

3
Signal Types

Metrics, logs, and traces provide complete visibility.

1
Unified Platform

OpenTelemetry standardizes all telemetry collection.


