Building High-Performance
Financial APIs with Rust:

Claims Management at Scale

A comprehensive exploration of how Rust is revolutionizing financial claims

processing systems handling over $350 billion annually, delivering unprecedented

performance, safety, and reliability for mission-critical fintech applications.

Nageswara Rao Nelloru

Marquee Technology Solutions, Inc., USA

z
s
i

Agenda: Rust's Impact on Financial Services

1 The Financial Services Performance Imperative

Understanding the unigue challenges of building mission-critical financial APIs and why legacy approaches fall short

2 Rust's Key Advantages for Financial Applications

Exploring memory safety, zero-cost abstractions, and fearless concurrency in financial contexts

3 Real-world Performance Metrics & Case Studies

Examining concrete outcomes from Rust-powered claims management systems processing $350B annually

4 Implementation Patterns & Integration Strategies

Practical approaches for building and deploying Rust financial APIs in production environments

S Security, Compliance & Future Directions

How Rust addresses financial-specific security requirements and what's next for Rust in fintech

The Financial Services Performance Imperative

Today's financial institutions face unprecedented demands from stakeholders and customers alike, creating technical challenges that push

legacy systems beyond their limits:

Speed Requirements Reliability Mandates

Modern customers expect instant claim decisions and immediate Financial APIs must maintain 99.9%+ uptime while processing
fund access, while companies need real-time risk assessment millions of daily transactions with perfect data integrity across
across global operations distributed systems

Security Imperatives Scale Challenges

Systems handling billions in transactions require bulletproof Modern claims systems must handle 26M+ daily requests while
protections against increasingly sophisticated attacks targeting maintaining sub-100ms response times across global

memory vulnerabilities infrastructure

Legacy systems built on Java, .NET and Python struggle to meet these demands without significant overprovisioning, creating cost
inefficiencies and reliability gaps that directly impact business outcomes. Financial institutions need a fundamentally different approach to API
development.

Why Rust for Financial Services?

Rust provides a unique combination of performance and safety guarantees that
make it exceptionally well-suited for mission-critical financial applications:

e Memory Safety Without Garbage Collection
Rust's ownership model eliminates entire classes of memory errors without
runtime performance penalties, preventing buffer overflows and use-after-free
vulnerabilities that plague C/C++ systems

e Zero-Cost Abstractions
Build high-level business logic without sacrificing performance - abstractions
compile down to optimal machine code with no runtime overhead

e Fearless Concurrency

Rust's type system prevents data races at compile time, enabling safe parallel

processing across thousands of concurrent claims without subtle threading
bugs Rust's unigue combination of safety and performance
has led to its adoption by major financial institutions

e Type-Driven Development for mission-critical API systems.

Encode complex business rules in the type system, making invalid states

unrepresentable and catching logic errors before deployment

Measurable Impact: Performance Metrics

Rust-powered claims management systems are delivering unprecedented performance improvements across key metrics that directly impact

business outcomes:

85% 26M 99.91% 40%

Processing Time Daily API Requests System Uptime Infrastructure Cost
Reduction Single Rust-based API gateway Improved availability from Reduction
Claims processing times reduced handling 26 million daily 99.74% to 99.91%, representing a Significantly lower CPU and
from 6.5 days to just 23.4 hours requests with consistent sub- reduction of 14.9 hours of memory requirements enable
through elimination of GC pauses 90ms response times across downtime annually for critical 40% infrastructure cost savings
and optimal resource utilization global operations financial systems while improving performance

These metrics come from aggregated data across multiple insurance carriers and financial institutions that have implemented Rust-based

claims processing systems over the past three years. The consistent pattern of improvement demonstrates that Rust's performance

characteristics translate directly to business value in financial contexts.

Case Study: Fraud Detection at Scale

SECURE TRANSACTION

Challenge

A major insurance carrier needed to analyze 142 data points per claim
across 810,000 daily fraud signals while maintaining sub-100ms response
times to enable real-time claim decisions.

Rust Solution

Implemented an asynchronous fraud detection pipeline using Rust's
async/await with tokio, processing multiple fraud signals concurrently while
maintaining strict memory bounds. Zero-copy deserialization with serde
reduced overhead for JSON parsing, while a custom memory pool

eliminated allocations in the hot path.

Results

e 99.96% of fraud checks completed in under 85ms

o False positive rate reduced by 31% through more sophisticated

algorithms enabled by Rust's performance
e System handles 4.2x traffic spikes without degradation

e 74% straight-through processing rate for eligible claims

Technical Deep Dive: Memory Management

Rust's ownership model enables high-performance financial systems by
eliminating memory-related errors and unpredictable latency spikes:

-

Ownership & Borrowing

Each piece of memory has exactly one owner, with borrowing rules enforced at

compile time, preventing use-after-free bugs in complex transaction flows

&

Deterministic Cleanup

Resources freed immediately when they go out of scope, eliminating GC pauses

that cause latency spikes during high-volume trading periods

O

Safe Abstractions

Build zero-cost wrappers around financial concepts that make invalid

operations unrepresentable while maintaining bare-metal performance

Memory Safety Impact on Financial Systems

In traditional garbage-collected languages like Java, financial systems experience
unpredictable latency spikes during collection cycles. C++ systems risk memory
corruption that can lead to catastrophic failures. Rust eliminates both problems
through compile-time enforcement of memory correctness without runtime
overhead.

"The predictable performance characteristics of

Rust allowed us to eliminate the 99.9th percentile

latency spikes that were causing transaction

timeouts during peak periods."

— Senior Architect, Global Insurance Provider

Technical Deep Dive: Fearless Concurrency

The Concurrency Challenge in Claims Processing

Modern claims systems must process thousands of concurrent requests while

maintaining data consistency across shared resources. Traditional approaches
force an unacceptable tradeoff:
Traditional Approaches

o Coarse-grained locks: Safe but creates bottlenecks
* Fine-grained locks: Better performance but risk deadlocks

e Lock-free algorithms: Highest performance but extremely error-prone

Rust's Solution

o Type-level thread safety: Compiler prevents data races

e Send/Synec traits: Explicit thread-safety guarantees
Rust's type system enforces thread safety at compile e Async/await: High-performance cooperative multitasking

e, Gaalling SEE RErEl Cl preeessig B ot e e Channels: Safe communication between processing stages
races.

In production financial systems, Rust's concurrency model has enabled processing
throughput improvements of 3-4x while eliminating an entire class of concurrency
bugs that previously caused system outages and data corruption incidents.

Rust Ecosystem for Financial APIs

The Rust ecosystem provides a rich set of libraries and framewaorks specifically beneficial for building financial services applications:

s

it

Async Runtime

tokio - Production-grade async runtime enabling thousands
of concurrent connections with minimal overhead. Used by
92% of financial Rust applications to handle high-throughput
API workloads.

API Frameworks

axum - Minimalist, performance-focused HTTP framework
built on tokio. actix-web - Feature-rich, battle-tested web
framework with comprehensive middleware ecosystem. Both
offer performance far exceeding traditional options.

Metrics & Monitoring

metrics and tracing - Comprehensive instrumentation
libraries for production systems. OpenTelemetry integration
enables seamless monitoring of distributed financial
transactions.

A
N—’

i

S

Database Access

sqlx - Type-safe async database access with compile-time
SEL validation. diesel - Robust ORM for complex queries with
strong type guarantees. Financial systems typically use both
for different access patterns.

Serialization

serde with serde_json - Zero-copy deserialization reducing
overhead when processing high volumes of financial data.
Used in all major Rust financial implementations for
performance-critical JSON handling.

Security

ring and rustls - Memory-safe cryptographic libraries

providing high-performance TLS implementation. Critical for
securing financial data in transit with minimal overhead.

Implementation Pattern: Error Handling for Financial
APls

Error handling in financial systems presents unique challenges - errors must be
properly categorized, traced, and handled without compromising performance or
security. Rust's Result and Option types enable robust, expressive error handling

patterns ideal for financial contexts:

Rearection piatehet

on Urctohalti

Type-Safe Error 1
Classification

Using Rust's enum types to

explicitly model domain- 2 Context-Preserving

specific errors, ensuring Error Propagation

comprehensive error coverage
The ? operator combined with

with exhaustive pattern

matching: the thiserror/anyhow libraries

enables clean error

T [, propagation while preserving

critical context needed for

ValidationFailed(ValidationE e e e

ror) Impact on Production Systems

fn process_claim(claim:
Claim) -> Result {

Financial institutions using Rust's error handling

InsufficientFunds(AccountD patterns report:

etails) let validated =
validate_claim(&claim)?; e 99.92% system availability (up from 99.74%)
FraudDetected(FraudSignal let risk_score = e 94% reduction in unhandled exceptions
calculate_risk(&validated)?; ,
S), o e Improved error tracing enables root cause
DatabaseError(DBError), VI, CEEele identification in minutes instead of hours
THRESHOLD {

e Enhanced regulatory compliance through

ThirdPartyServiceError(Serv comprehensive error audit trails
additional_verification(&vali P

ice, Error)
} dated)?;
}
Ok(finalize_claim(validated)
Zero-Overhead Error 3 ?)
Handling ¥

Rust's error handling compiles

to optimal machine code with
no runtime overhead, enabling
comprehensive error checking
without performance penalties

Integration Strategies: Adopting Rust Incrementally

Most financial institutions can't rewrite entire systems at once. These proven integration patterns enable incremental adoption of Rust in
existing financial architectures:

Performance- API Gateway & Foreign Function
Critical Transformation Interface (FFI)
Microservices Layer

Expose Rust functionality

Identify high-impact Implement a Rust-based to existing Java/.NET

bottlenecks in existing API gateway to handle applications through FFI

systems and replace with request routing, rate bindings. This approach
targeted Rust limiting, and protocol enables surgical
microservices. Common translation. This pattern replacement of
candidates include fraud reduced latency by 67% for performance-critical
detection, payment a global payments components while
processing, and real-time provider while adding maintaining compatibility
analytics. This approach minimal risk to existing with existing systems. One
delivered 74% processing systems. The gateway bank improved transaction
time improvement ata became the foundation for throughput 3.2x using this
major insurer without further Rust adoption. approach with their Java
disrupting core systems. core banking system.

Successful Rust adoption typically follows a phased approach, starting with non-critical components and gradually expanding as teams build

expertise. Organizations report that proving Rust's value through targeted initial deployments is critical for securing broader adoption support.

Security Considerations for Financial Rust
Applications

Rust provides security advantages that directly address financial industry
requirements:

Memory Safety Guarantees

Rust eliminates entire classes of vulnerabilities (buffer overflows, use-after-
; = _ free, dangling pointers) that account for ~70% of critical CVEs in financial

smmEnoI0Iom 'Im’.r-_——~—. 2 11111 HHEIII]EHU‘:""""-!-* . . .

01010101 10! ”‘ ===\ 10110V 00HNI0 N systems. The ownership model enforces safe memory access at compile time

10070110707 107HOPVSN,— with zero runtime overhead.
101101 00HOIDNDIETY

Rust's strict compiler catches logic errors before deployment, reducing the
attack surface of production systems. Financial institutions report 42% fewer
security-related incidents after Rust adoption.

| Fail-Fast Compilation

Financial-Specific Security
Requirements

Safe FFI Boundaries

When interfacing with legacy systems, Rust provides safe abstractions over

FnEeEl systsns e Uriligie ety erelEieEs unsafe FFI code, containing potential vulnerabilities to well-defined

Including: boundaries. This pattern has proven crucial for secure incremental adoption.
e Regulatory compliance (PCI-DSS, SOX, GDPR)

e Multi-tenant data isolation requirements . .
Data Isolation Through Ownership
e Sophisticated threat actors targeting financial data
« Complex authentication/authorization needs Rust's ownership model naturally enforces the principle of least privilege and
data isolation requirements, making it easier to build multi-tenant financial

systems that maintain strict separation between customer data.

Key Takeaways & Next Steps

Key Takeaways

Performance + Safety = Incremental Adoption Is
Business Value Practical

Rust delivers measurable Financial institutions can adopt
business impact through its Rust strategically through

unigue combination of microservices, API gateways, and
performance and safety FFI without risky system rewrites

guarantees: 85% faster
processing, 99.91% uptime, and

40% infrastructure cost reduction

Ecosystem Maturity

The Rust ecosystem now provides production-ready libraries for all critical

financial API needs, from async processing to secure database access

Next Steps

1. Identify high-impact performance bottlenecks in existing systems as initial Rust

targets
2. Start with small, bounded microservices to build team expertise
3. Leverage Rust's memory safety advantages for security-critical components

4. Establish metrics to quantify business impact of Rust adoption

Project Phoenix

https://www.rust-lang.org/learn

