
Efficiency in Motion: Mastering 
Continuous Delivery without 
Compromising Stability
Naresh Waswani
 
Senior Architect, Simpplr Inc.



About Me

Work as a Senior Architect with Simpplr Inc.

Specialize in creating software products using Microservices and 

Event Driven Architecture

Publish Technical blogs on - https://waswani.medium.com

To Connect - https://www.linkedin.com/in/nwaswani/

https://waswani.medium.com
https://www.linkedin.com/in/nwaswani/


Let’s Dive In



Product Team

Developers

Requirements

Production Environment

Feature

End Users

Develop & Test Use

Feedback



Continuous Delivery is the Software Development Process of 

getting the code changes deployed to production quickly, 

safely and with higher quality.



A Microservice is an independent deployable unit, modeled 
around a business domain and generally collaborate with other 

microservices to deliver a larger business use case.



Key Advantage - Team Autonomous



Key Advantage - Team Autonomous



But when it comes to shipping the Features, things go crazy



Deployment Pattern



Is that not Distributed Monolith ???



What can lead to Distributed Monolith

● Inappropriate Service Boundary



What can lead to Distributed Monolith

● Inappropriate Service Boundary

● Shared Data Storage



What can lead to Distributed Monolith

● Inappropriate Service Boundary

● Shared Data Storage

● Too Many Shared Libraries



There is one more reason for such a Deployment Pattern



Pre-defined Feature Release Schedule



Some of the Non-Technical reasons 

● You want to create a Market Buzz



Some of the Non-Technical reasons 

● You want to create a Market Buzz
● Customers don’t really have an appetite to absorb so many features in a 

short time



Some of the Non-Technical reasons 

● You want to create a Market Buzz
● Customers don’t really have an appetite to absorb so many features in a 

short time
● You want to share Penetration testing report of your product



Some of the Non-Technical reasons 

● You want to create a Market Buzz
● Customers don’t really have an appetite to absorb so many features in a 

short time
● You want to share Penetration testing report of your product
● You need to train your CS teams, publish user guides



The Problem !!!



High Risk



High Deployment 
Time



Burns out 
Engineering Team



The Solution !!!



Deploy the service as soon as a Feature is developed



But then…

What happens to the release cadence?

I still have half baked code for Feature X in the same branch?



Deployment != Feature Release



Image Credit - https://www.freepik.com/free-photos-vectors/on-off-toggle-switch

Feature Toggle to the rescue



Image Credit - https://developer.harness.io/assets/images/overview-1f5470a387b20eafc3014f98233f200e.png



Continuous Delivery

Services shipping their features behind a 
feature flag as an when their features are 
developed and tested



Low Risk, Zero 
Downtime

How it helps ?



Low Risk, Zero 
Downtime

How it helps ?

Flexibility on 
Feature Release



Low Risk, Zero 
Downtime

How it helps ?

Flexibility on 
Feature Release

Can Do Dark Launch



Low Risk, Zero 
Downtime

How it helps ?

Flexibility on 
Feature Release

Testing in 
Production

Can Do Dark Launch



Low Risk, Zero 
Downtime

How it helps ?

Flexibility on 
Feature Release

Testing in 
Production

Embrace Trunk 
Based Development

Can Do Dark Launch



Low Risk, Zero 
Downtime

How it helps ?

Flexibility on 
Feature Release

Testing in 
Production

Master The Art Of 
Deployment

Embrace Trunk 
Based Development

Can Do Dark Launch



But as the saying goes, nothing comes for free !!!



Low Fault Tolerance

Challenges ?



Low Fault Tolerance

Challenges ?

High Testing and 
Validation Effort



Image Credit - https://martinfowler.com/articles/feature-toggles/feature-toggles-testing.png



Low Fault Tolerance

Challenges ?

High Testing and 
Validation Effort

Enforce Governance



Low Fault Tolerance

Challenges ?

High Testing and 
Validation Effort

Enforce Governance

Operational 
Ownership



Low Fault Tolerance

Challenges ?

High Testing and 
Validation Effort

Tech. Debt 
Accumulated

Enforce Governance

Operational 
Ownership



Low Fault Tolerance

Challenges ?

High Testing and 
Validation Effort

Tech. Debt 
Accumulated

High Learning Curve

Enforce Governance

Operational 
Ownership



Low Fault Tolerance

Challenges ?

High Testing and 
Validation Effort

Tech. Debt 
Accumulated

High Learning Curve

Resiliency cannot be 
an afterthought

Enforce Governance

Operational 
Ownership



Low Fault Tolerance

Challenges ?

High Testing and 
Validation Effort

Observability cannot 
be an afterthought

Tech. Debt 
Accumulated

High Learning Curve

Resiliency cannot be 
an afterthought

Enforce Governance

Operational 
Ownership



Summary



Summary

Use Feature Flags and Define Operational & Governance model for it

Embrace Trunk Driven Development

Ensure Feature verification via Test Automation with Toggle Flags on and off



Summary

Use Feature Flags and Define Operational & Governance model for it

Embrace Trunk Driven Development

Ensure Feature verification via Test Automation with Toggle Flags on and off

And you are all set !!!


