
Neelanjan Manna
Software Engineer, OSS Maintainer

Chaos Validation Made Easy: Plug &
Play with Resilience Probes

Sayan Mondal
Sr. Software Engineer, OSS Maintainer

What Causes Downtime
Application Failures Infrastructure Failures Operational Failures

● Excessive Logging to debug
● Too many retries
● Service Timeout

Reputational Impact Financial Impact Poor User Experience

Slack’s Outages Est. >$55M in losses to WF 75,000+ passengers travel
plans impacted

● Device failures
● Network failures
● Region not available

● Capacity issues
● Incident management
● Monitoring dashboards

not available

Failures impacting
resiliency is
inevitable

● Not proactively managed

● Downtimes maybe expensive

● Believed to be just for Ops

● Difficult to manage chaos in
CI/CD

● No monitoring of impact

The problem with existing solutions

Failure Scenarios
are Difficult to
Implement

● Isn't implemented in a
safe/controlled environment

● Isn't collaborative

● Not scalable

Failure Testing
isn’t automated

The Cloud-Native problem

Proliferation of applications
into micro services leads to a
RELIABILITY challenge

In cloud native, your code depends on hundreds of
other microservices and runs on many platforms.
The potential of being subjected to a dependent
component failure is huge.

Legacy DevOps

Cloud native DevOps

Build one
application

Every Quarter

Week

Too many fault scenarios.
Significant increase in service

down potential because of a
failure of a dependent service

01

Ship it.

02

Run it.

03

Build 10x micro
services

Every Quarter

01

Ship them
10x faster.

02

Run in 100x
different

environments

03

What is Chaos Engineering

A Better Solution: Harness Chaos Engineering

SREs + Developers
Experiments are in Git just like code

Chaos engineering is collaborative
Collaborative chaos experiments in
a centralized control plane

Optimize initial investment
Reduce the inertia for starting chaos

Robust Experiments

Public and private chaos hubs with
ready to use experiments

Find weaknesses during build/test phase
Verifying at dev stage saves money

Integrate into CI/CD systems
Rollout automated and controlled
chaos experiments across
prod/non-prod environments

Measure the impact of inducing chaos
Build confidence by starting small

Enables observability for Chaos
Chaos metrics used to assess
impact and manage SLOs/Errors

Improve Resilience
at CD with Chaos

Integrate with CI
systems

For Developers

Continuous
Verification of SLOs

Chaos-assisted
Observability

For SREs

Drastically Improve
Recovery Time

Reduce the Time to
Triage Failures

Significantly Reduce
Service Outages

Chaos
Workflows

Templatized
Experiments

Team
Collaboration

Public and Private
Chaos Hubs

Harness Chaos Engineering

Getting Started

01.
Get Started with
SaaS or On-Premise

02.
Pick an experiment,
control your blast radius

Getting Started

03.
Observe Impact

04.
Automate with CI/CD tooling

What are Resilience Probes

Resilience Probes are reusable pluggable checks that could be
used with any chaos experiment

Adhering to the 'Write once, Use anywhere' paradigm, this approach promotes
the reuse of the same/new probe instead of creating a brand new one each time
a chaos experiment is executed/edited.

How to use these probes?

Configure a global
resilience probe

Plan the experiment

01

Observe the impact in that
experiment

03

Add the necessary probes

02

Schedule the experiment

Types of probes

● HTTP Probe

● Command Probe

● Kubernetes Probe

● Prometheus Probe

● Datadog Probe

● Dynatrace Probe

● SLO Probe

● HTTP Probe

● Command Probe

● Datadog Probe

● Dynatrace Probe

Use cases

SOT

EOT

Query health/downstream URIs

Execute any user-desired
health-check function

Perform CRUD operations against native
& custom Kubernetes resources

Execute promql queries and match
prometheus metrics for specific criteria

MODES

OnChaos

Continuous

Edge

Let users validate the error budget for a
given SLO

Hands on Demo

Thank You

Ask away any question!

/NeelanjanManna

/neelanjan00

harness.ioFollow us on

/s_ayanide

/s-ayanide

