
Effortless Concurrency
Leveraging the Actor Model in Financial

Transaction Systems

Nikita Melnikov
x: @nikita_melnikov

Atlantic Money

About me
VP of Engineering at Atlantic Money

ex-Tinkoff Bank and ex-Tinkoff Investments

10+ years in Fintech

Was working on high-load systems, 300k+ RPS

Scala, Golang, Postgres, and Kafka ❤️

Agenda
Financial transaction and typical problems

Traditional Approaches and Their Limitations

Shifting to Asynchronous Processing

Kafka as a Messaging Backbone

Implenting Asynchronous Processing

Actor Model

Conclusions and Q&A

What is financial transaction

RecipientAppCustomer

RecipientAppCustomer

Create $100 -> €90 transfer
1

Send $100 the payment
2

Send €90
3

Transfer flow
Wait for USD

Run checks

Send EUR

What happens in the real world
Customer creates USD -> EUR transfer

System waits for USD

System writes the payment details

System runs checks

Sanction lists

Anti-fraud

Check payment limits

Calculate fees

Many more

Exchange currencies

Send EUR to the recipient

Typical problem

Lost update

ComplianceDatabaseTransfers

ComplianceDatabaseTransfers

par [Compliace team decided to cancel the
transfer]

Select transfer
1

Check sender & recipient
2

OK
3

POST /transfers/cancel
4

Select transfer to restrict
5

Update transfer
6

Update transfer
7

Lost update

10 COMMIT;

1 BEGIN TRANSACTION;

2

3 SELECT * FROM transfers WHERE id = 1;

4 -- [id: 1, status: 'CREATED']

5

6 UPDATE transfers

7 SET status = 'CANCELLED'

8 WHERE id = 1;

9

10 COMMIT;

1 BEGIN TRANSACTION;

2

3 SELECT * FROM transfers WHERE id = 1;

4 -- [id: 1, status: 'CREATED']

5

6 UPDATE transfers

7 SET status = 'PAYMENT_RECEIVED'

8 WHERE id = 1;

9

Lost update

2 -- [id: 1, status: ???]

1 SELECT * FROM transfers WHERE id = 1;

Traditional approaches

Option #1

Database transaction

Option #1: Database transaction
BEGIN TRANSACTION;1

Option #1: Database transaction

Database transaction limitations
Processing time is 5 seconds

x

100 operations / second

=

500 active transactions

Option #2: Locks

Option #2.1: Local locks
type Transfer struct {

mu *sync.Mutex

}

1

2

3

Local locks limitations

Node2Node1User

Node2Node1User

par [transfers-api-1]

par [transfers-api-2]

POST /transfers/pay
1

POST /transfers/cancel
2

Option #2.2: Distributed locks

Distributed locks

TransferDistributed Lock ManagerNode 2Node 1

TransferDistributed Lock ManagerNode 2Node 1

Node 1 has the lock

Node 2 waits

Node 2 has the lock

Request lock
1

Grant lock
2

Request lock
3

Access resource
4

Release lock
5

Grant lock
6

Access resource
7

Distributed locks storages
Hazelcast

Zookeeper

Etcd

Consul

Redis

Distributed locks limitations
The Problem of Ordering

Timeouts

Lock Acquisition Timeouts

Lock Holding Timeouts

Timeout Handling

What will we do in case of timeouts?

Potential deadlocks

Asynchronous Processing

Transfer Model: Finite State Machine
Transfer has multiple states

State transitions occur via commands

Each state defines allowed commands

Commands trigger actions and state changes

Asynchronous Processing
FSM

[ReceivePayment]

[SendChecksForProcessing]

[ApplyCheckResult]

[ApplyCheckResult] [ApplyCheckResult]

created

payment_received

checks_sent

checks_pending

checks_approved

continue_status

checks_rejected

struct Transfer {

ID UUID

Status Status

}

1

2

3

4

Command Processing
func (t *Transfer) Process(command Command) {

switch x := command.(type) {

case ReceivePaymentCommand:

CheckStatus(t.Status, StatusCreated)

t.PaymentDetails = x.PaymentDetails

t.Status = StatusPaymentReceived

t.Save()

t.sender.SendChecksCommand()

case SendChecksCommand:

CheckStatus(t.Status, StatusPaymentReceived)

t.Status = StatusChecksSent

t.Save()

t.checks.SendRunChecksCommand(t.Checks)

case ApplyCheckResultCommand:

CheckStatus(t.Status, StatusChecksPending)

t.ApplyCheckResult(x.CheckResult)

t.Status = CalculateNewStatus(x.CheckResult)

t.Save()

}

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Requirements for asynchronous processing
Communication through messages

One-at-a-time message handling

Durable message storage

Communication through messages

One-at-a-time message handling

Message ConsumerTransfer QueueMessage Producer

Message ConsumerTransfer QueueMessage Producer

Only one message processed at a time

Queue message (Msg 1)
1

Deliver message (Msg 1)
2

Acknowledge message (Msg 1)
3

Queue message (Msg 2)
4

Queue message (Msg 3)
5

Deliver message (Msg 2)
6

Acknowledge message (Msg 2)
7

Deliver message (Msg 3)
8

Acknowledge message (Msg 3)
9

Durable message storage

Kafka ❤️

Kafka Basics

Partition 1

Partition 2

Partition 3

Topic1

Partition 1 Partition 2 Partition 3

Broker 1

Broker 2

Broker 3

Kafka Basics

Partition Offsets

Kafka Basics

Message Routing

Topic

Producers

Key 1 Key 2 Key 3Key 1 Key 2 Key 3

Partition 1 Partition 2 Partition 3

Producer 1 Producer 2

Producer guarantees
acks=0

No acknowledgment is needed

Lowest latency

No delivery guarantees

acks=1

The leader acknowledges the write.

In case of leader failure, data loss is possible.

acks=all

All in-sync replicas.

Highest durability

Highest latency

Requirements for asynchronous processing
(again)

Communication through messages - ✅

Durable message storage - ✅

One-at-a-time message handling - 🤔

Consumer requirements
We want to have one-at-a-time message processing

Each transfer should be processed by a single consumer

Consumers should be able to scale horizontally

Consumer Groups

ConsumerGroup

Topic

Consumer Instance 1 Consumer Instance 2

Partition 1 Partition 2 Partition 3

We’ve got everything we need!

Messaging system using Kafka
Combine all together to build a messaging system

Actor Model

Core Concepts
Actors as Fundamental Units

Asynchronous Message Passing

State Isolation

Sequential Message Processing

Location Transparency

Fault Tolerance

Scalability

Important Disclaimer

We will use the Actor Model as a concept to build a system.

There is no need to implement all the features of the Actor Model such as

supervision, location transparency, etc.

This is not full implementation of the Actor Model as Erlang or Akka.

Implementing Actor model in the system

Interfaces
Storage

Actor

Actor Mailbox

Command Producer

K - key type (transfer id)

S - value type (transfer state)

C - command type (transfer command)

1 type Storage[K, S any] {

2 New(K) S

3

4 Get(K) (S, bool)

5 Put(K, S)

6 }

1 type Actor[S, C any] {

2 Receive(S, C) (S, error)

3 }

1 type ActorMailbox[K, S, C any] struct {

2 Consume(K, S, C) error

3 }

1 type CommandProducer[K, C any] struct {

2 Produce(K, C) error

3 }

Kafka Consumer
1 func (c *Consumer) Consume(record *Record) {

2 key := record.Key()

3 command := record.Value()

4

5 state, found := c.storage.Get(key)

6 if !found {

7 state = c.storage.New(key)

8 }

9

10 newState := c.actor.Receive(state, command)

11 c.storage.Put(key, newState)

12 }

Hold on!

There is a problem with double writes!

Double write problem

KafkaPostgresService

KafkaPostgresService

Write to Database

Acknowledge Write

Send Message to Kafka

Acknowledge Message

If the service crashes after writing to Postgres but before sending the message to

Kafka, the data will be inconsistent.

Double write problem: Outbox Pattern

12 tx := c.db.Begin()

13 c.storage.Put(tx, key, newState)

14 for _, effect := range effects {

15 c.outbox.Put(tx, effect)

16 }

17 tx.Commit()

1 func (c *Consumer) Consume(record *Record) {

2 key := record.Key()

3 command := record.Value()

4

5 state, found := c.storage.Get(key)

6 if !found {

7 state = c.storage.New(key)

8 }

9

10 newState, effects := c.actor.Receive(state, command)

11

18 }

Outbox Pattern: Writing messages from
Outbox to Kafka

Kafka
Debezium

Postgres

Topic: compliance.commands

Topic: payments.commands

Topic: transfer.events

Debezium ConnectorTable: transfers Table: outbox

Toxic Messages

Toxic Messages
Toxic messages are messages that cannot be processed

Toxic messages can be caused by:

Incorrect message format

Incorrect message version

Incorrect message data

Logic errors

Incorrect actor state

Incorrect message processing

Toxic Messages and Dead-Letters

10 newState, err := c.actor.Receive(state, command)

11 if errors.Is(err, kafka.ErrToxic) {

12 return c.deadLetters.Produce(record)

13 }

1 func (c *Consumer) Consume(record *Record) {

2 key := record.Key()

3 command := record.Value()

4

5 state, found := c.storage.Get(key)

6 if !found {

7 state = c.storage.New(key)

8 }

9

14 c.storage.Put(key, newState)

15 }

Kafka Consumer implementation
1 func (c *Consumer) Consume(record *Record) {

2 key := record.Key()

3 command := record.Value()

4

5 state, found := c.storage.Get(key)

6 if !found {

7 state = c.storage.New(key)

8 }

9

10 newState, effects, err := c.actor.Receive(state, command)

11 if errors.Is(err, kafka.ErrToxic) {

12 return c.deadLetters.Produce(record)

13 }

14

15 tx := c.db.Begin()

16 c.storage.Put(tx, key, newState)

17 for _, effect := range effects {

18 c.outbox.Put(tx, effect)

19 }

20 tx.Commit()

21 }

Transfer Actor Implementation

11 return newState, effects, nil

1 func (a *TransferActor) Receive(state TransferState, command TransferCommand) (TransferState, []Effect, error) {

2 switch x := command.(type) {

3 case ReceivePaymentCommand:

4 newState := state.ReceivePayment(x.PaymentDetails)

5

6 effects := []Effect{

7 NewSendChecksCommandEffect(state.TransferID),

8 NewTransferEvent(NewPaymentReceivedEvent(state.TransferID)),

9 }

10

12 default:

13 return state, nil, kafka.NewErrToxic("unknown command")

14 }

15 }

Conclusion
The most simple way to solve concurrency problems is to avoid concurrency.

Q&A

