
1

Zero-instrumentation observability 
based on eBPF

Nikolay Sivko,
Co-Founder and CEO at Coroot



Observability is …

2

… being able answer questions about your system:

• How is the system performing right now?
• How does its performance compare to an hour ago?
• Why are some requests failing?
• Why are certain requests taking longer than expected?



Systems a while ago

3

• A monolith application
• DB runs on dedicated nodes
• If something goes wrong:

• Check the app’s logs/metrics
• Check the DB’s logs/metrics
• Check the hardware



Modern systems

4

• Hundreds or even thousands of services dynamically allocated to nodes
• Nodes are dynamic and can appear and disappear
• If something goes wrong:

• Troubleshooting follows the system’s topology
• Analysis of extensive telemetry, from application latency to EBS 

performance



Making a system observable

5

• Collecting telemetry data: metrics, logs, traced, profiles
• Time- and resource-consuming process since it requires adding 

instrumentation into every application
• Hard to achieve 100% coverage without blind spots (3rd party and 

legacy services)

• Storing telemetry data in some databases

• Learning how to troubleshoot your system using all that data
• The most challenging part



Collecting telemetry data

6

Before answer HOW to gather, let’s discuss WHAT to gather or what we want to 
know about our apps.

• SLI (Service Level Indicators): requests, errors, latency
• Communication with other services or databases: requests, errors, latency
• Resource-related metrics: CPU, Memory, Disk
• Network-related metrics: latency, connectivity, packet loss
• Node-level metrics and logs
• Runtime-related metrics: GC, Thread Pools, Connection pools, Locks
• Orchestrator-related metrics
• Logs to identify application-specific issues
• Profiles to explain spikes in CPU or Memory usage



Collecting telemetry data

7

• It’s possible to collect all these data without using eBPF, but eBPF allows to 
achieve that in MINUTES

• There are always legacy and 3rd party services that you can’t instrument. 
eBPF doesn’t require code changes and redeployments.

• Usually, developers instrument only most critical services, so you can’t be 
sure that you have no blind spots. 

• Instrumentation is a continuous process, so you need to ensure that every 
new service integrates OpenTelemetry SDKs. 



A quick intro into eBPF

8

• A feature of the Linux kernel
• Allows to run small programs in the kernel-space and call them on any 

kernel or app function call
• Such programs have access to function arguments and returning values
• Then, they can send some data to a program in the user-space

eBPF is just a way how we can obtain data, we just need to implement 
kernel-space and user-space programs



How to use eBPF

9

• Kprobe allows to capture any kernel function call
• Kernel functions can be renamed, deleted, their arguments can change
• Some functions, in fact, almost never change

• Tracepoints – statically instrumented places in the kernel which are 
relatively stable comparing to Kprobe

• Uprobe allows to capture user-space programs calls
• MAPS allow to store some state in the kernel space
• PERF_MAPS allows to share data between the kernel-space and user-

space

It’s good to know, but you don’t have to write your own eBPF programs. There 
are a lot of ready-made tools, such as Coroot



Coroot-node-agent (Apache 2.0 license)

10

• An open-source Prometheus/OpenTelemetry compatible agent that 
gathers metrics, logs, traces and profiles

• Discovers containers/processes running on the node
• Discovers their logs (k8s, docker, containerd, journald) and sends them 

over OTLP
• Extracts repeated patterns from logs and generates log-based metrics
• Monitors TCP connections of every container
• Measures network latency between each container and its peers
• Tracks communications between services (requests, errors, latency), 

supports HTTP, GRPC, Postgres, MySQL, MongoDB, Redis, Memcached, 
Cassandra, Kafka, Rabbitmq, NATS



How the agent leverages eBPF

11

tracepoint/task/task_newtask: tracking new process creation. It reports only 
a PID, then the agent discovers container metadata using /proc

tracepoint/oom/mark_victim: marking a process as a victim of the OOM 
killer

tracepoint/sched/sched_process_exit: tracking process terminatio. If a 
process was terminated by the OOM killer, the event is enriched with the 
reason of the termination

tracepoint/syscalls/sys_enter_open(at): tracking file openings to identify 
the logs and partitions used by a specific container



How the agent leverages eBPF

12

tracepoint/syscalls/sys_enter_connect: tracking FD of a TCP connection

tracepoint/sock/inet_sock_set_state: tracking peers and states of TCP 
connections

tracepoint/tcp/tcp_retransmit_skb: tracking TCP retransmissions



How the agent leverages eBPF

13

tracepoint/syscalls/sys_enter_write/writev/sendmsg/sendto: track writes 
to an FD (socket)

tracepoint/syscalls/sys_enter_read/readv/recvmsg/recvfrom: track reads 
from an FD (socket) 

2-phase L7-protocol parsing:
• Kernel space: high-performance protocol detection
• User—space: protocol parsing for generating metrics and traces



SSL

14

Capturing the data before encryption and after decryption.

• For apps using OpenSSL: 
• uprobe/SSL_read 
• uprobe/SSL_write

• For GO apps: 
• uprobe/go_crypto_tls_write
• uprobe/go_crypto_tls_read



eBPF: performance impact

15

The Linux kernel ensures minimal interruption to kernel code execution by 
validating each eBPF program before execution:
• Program must have a finite complexity. 
• The verifier evaluates all possible execution paths within configured upper 

complexity limits

Communication between kernel-space and user-space programs occurs 
through a ring buffer:
• If the user-space program delays data reading, it may miss data due to 

overwriting

For observability, it’s a great deal: although we might lose some telemetry 
data, we can be sure that there is no impact on performance



eBPF-based metrics

16



eBPF-based metrics

17

• L7: requests per second, Errors, Latency
• Network Round-trip-time (RTT)
• TCP: connections, failed connection attempts, retransmissions (can signify 

packet loss)



eBPF-based traces (spans)

18

• Traces are extremely useful for identifying the particular requests within an 
anomaly

• They also provide a more granular distribution of requests by latency and 
status



eBPF-based tracing limitations

19

• The OpenTelemetry SDKs generate a TRACE_ID for each request and 
propagate it to other services

• When using eBPF, TRACE_IDs are not available, limiting us to capturing 
individual spans (requests) rather than complete traces

• There's a tool that claims to generate TRACE_IDs by intercepting and 
modifying requests, but I think it's not a good idea

Coroot supports both traditional OpenTelemetry integration and eBPF-based 
tracing methods



eBPF-based continuous CPU profiling

20

• Allows to explain any anomaly in CPU usage precise to the particular line of 
code

• Doesn’t require any code changes

• Gathers per-process call stacks and aggregates them by containers

• Resolution by default is 60 seconds, so you can compare profiles within 
and anomaly with previous periods



eBPF-based CPU profiling

21



eBPF-based CPU profiling (comparison mode)

22



How Coroot works

23

• coroot-node-agent: gathers metrics, logs, traces, and profiles. Installed on 
every node in the cluster (k8s, docker, VM, bare-metal)

• Prometheus for storing metrics
• ClickHouse for storing logs, traces, and profiles
• Coroot: UI, alerts, predefined inspections
• You can use Coroot as an OpenTelemetry backend for logs and traces



Conclusion

24

• eBPF is awesome! 

• It enables gathering almost any telemetry data you need without requiring 
code changes. 

• The performance impact on your apps is negligible. 

• Want to gain system visibility in minutes? Install Coroot (Open Source, 
Apache 2.0).

 
https://github.com/coroot/coroot



https://www.linkedin.com/in/nikolay-sivko 
https://twitter.com/NikolaySivko 

https://www.coroot.com
https://github.com/coroot/coroot

Thank you, Let’s connect!

25

https://www.linkedin.com/in/peterzaitsev
https://twitter.com/PeterZaitsev
https://www.coroot.com/

