Zero-instrumentation observability
based on eBPF

Nikolay Sivko,
Co-Founder and CEO at Coroot

Observability is ..

.. being able answer questions about your system:

« How is the system performing right now?
« How does its performance compare to an hour ago?

- Why are some requests failing?
- Why are certain requests taking longer than expected?

coroot ~#% B

Systems a while ago

- — - e - - - - e = e e e - - - o T Em e e En e e e e e o e e

n
]
°_
g'
ot
9
_

- - E— - - - - - - -
-—een - e an e e - -

e e e e e er e e e e e - e - - P

- A monolith application
- DB runs on dedicated nodes

 If something goes wrong:
« Check the app’s logs/metrics
+ Check the DB's logs/metrics
« Check the hardware

coroot ~# B

Modern systems

O\ reao(-replica
~.
—

« Hundreds or even thousands of services dynamically allocated to nodes

« Nodes are dynamic and can dppear and disappear

- If something goes wrong:
« Troubleshooting follows the system’s topology

- Analysis of extensive telemetry, from application latency to EBS
performance

coroot ~#

Making a system observable

« Collecting telemetry data: metrics, logs, traced, profiles

- Time- and resource-consuming process since it requires adding
instrumentation into every application

- Hard to achieve 100% coverage without blind spots (3" party and
legacy services)

 Storing telemetry data in some databases

« Learning how to troubleshoot your system using all that data
« The most challenging part

coroot ~# Bs

Collecting telemetry data

Before answer HOW to gather, let’s discuss WHAT to gather or what we want to
know about our apps.

- SLI (Service Level Indicators): requests, errors, latency

- Communication with other services or databases: requests, errors, latency
» Resource-related metrics: CPU, Memory, Disk

» Network-related metrics: latency, connectivity, packet loss

» Node-level metrics and logs

* Runtime-related metrics: GC, Thread Pools, Connection pools, Locks

« Orchestrator-related metrics

+ Logs to identify application-specific issues

 Profiles to explain spikes in CPU or Memory usage

coroot ~# Bs

Collecting telemetry data

 It's possible to collect all these data without using eBPF, but eBPF allows to
achieve that in MINUTES

- There are always legacy and 3@ party services that you can’t instrument.
eBPF doesn't require code changes and redeployments.

« Usually, developers instrument only most critical services, so you can't be
sure that you have no blind spots.

« Instrumentation is a continuous process, so you need to ensure that every
new service integrates OpenTelemetry SDKs.

coroot ~#

A quick intro into eBPF

« A feature of the Linux kernel

« Allows to run small programs in the kernel-space and call them on any
kernel or app function call

« Such programs have access to function arguments and returning values
« Then, they can send some data to a program in the user-space

eBPF is just a way how we can obtain data, we just need to implement
kernel-space and user-space programs

coroot ~#

How to use eBPF

Kprobe allows to capture any kernel function call
« Kernel functions can be renamed, deleted, their arguments can change
- Some functions, in fact, almost never change

« Tracepoints — statically instrumented places in the kernel which are
relatively stable comparing to Kprobe

« Uprobe allows to capture user-space programs calls
- MAPS allow to store some state in the kernel space

 PERF_MAPS allows to share data between the kernel-space and user-
space

It's good to know, but you don’t have to write your own eBPF programs. There
are a lot of ready-made tools, such as Coroot

coroot ~#

Coroot-node-agent (Apache 2.0 license)

. An open-source Prometheus/OpenTelemetry compatible agent that
gathers metrics, logs, traces and profiles

- Discovers containers/processes running on the node

- Discovers their logs (k8s, docker, containerd, journald) and sends them
over OTLP

- Extracts repeated patterns from logs and generates log-based metrics
« Monitors TCP connections of every container
« Measures network latency between each container and its peers

. Tracks communications between services (requests, errors, latency),
supports HTTP, GRPC, Postgres, MySQL, MongoDB, Redis, Memcached,
Cassandra, Kafka, Rabbitma, NATS

coroot ~#

10

How the agent leverages eBPF

tracepoint/task/task_newtask: tracking new process creation. It reports only
a PID, then the agent discovers container metadata using /proc

tracepoint/foom/mark_victim: marking a process as a victim of the OOM
killer

tracepoint/sched/sched_process_exit: tracking process terminatio. If a
process was terminated by the OOM killer, the event is enriched with the

reason of the termination

tracepoint/syscalls[sys_enter_open(at): tracking file openings to identify
the logs and partitions used by a specific container

coroot :~# Bl

How the agent leverages eBPF

tracepoint/syscalls[sys_enter_connect: tracking FD of a TCP connection

tracepointlsock/inet_sock_set_state: tracking peers and states of TCP
connections

tracepoint/tcp/tcp_retransmit_skb: tracking TCP retransmissions

coroot ~# EaP

How the agent leverages eBPF

tracepoint/syscalls/sys_enter_write/writev/sendmsg/sendto: track writes
to an FD (socket)

tracepoint/syscalls/sys_enter_read/readv/recvmsg/recvirom: track reads
from an FD (socket)

2-phase L7-protocol parsing:
- Kernel space: high-performance protocol detection
« User—space: protocol parsing for generating metrics and traces

coroot ~# BEE

SSL

Capturing the data before encryption and after decryption.

« For apps using OpenSSL:
. uprobe/SSL_read
. uprobe/SSL_write

 For GO apps:
. uprobe/go_crypto_tls_write
. uprobe/go_crypto_tls_read

coroot ~# BB

eBPF: performance impact

The Linux kernel ensures minimal interruption to kernel code execution by
validating each eBPF program before execution:

- Program must have a finite complexity.

- The verifier evaluates all possible execution paths within configured upper
complexity limits

Communication between kernel-space and user-space programs occurs
through a ring buffer:

 If the user-space program delays data reading, it may miss data due to
overwriting

For observability, it's a great deal: although we might lose some telemetry
data, we can be sure that there is no impact on performance

coroot ~# BRE

eBPF-based metrics

@ delivery
ns:.default |

e

® load-test
ns:default

30 rps
@ nginx

instances:1

‘ @ postgres-operator .. o=
ns:.zalando

'@ postgrest |

ns:default ‘

: ® cart —— @ catalog
ns:default T ns:default

- 1rpé

~ .- _02ms

4mps 23 rps/"- .

© front-end
ns:default

® order

| @user. |
ns:default ns:default T

® cache
gmemcached / ns:default

p r, @ cart-db

€redis / ns:default

) ® cassandra-main

fl Ecassandra / ns:default

":;, ® db-main

&postgres / ns:default

® kafka

ns.default / &kafka

. @my-nats

ns:.default / &nats

' @ order-db-mongodb
| =mongodb / ns:default

© rabbitmg-cluster-operator
ns:rabbitmg-system

. ~a @ rabbitmg-server

ns:default / &rabbitmq

~ <] @ recommendations
ns:default

“«| ®user-db
gmysql / ns:default |

coroot 1~ BRE

eBPF-based metrics

: ® db-main
@ catalog &postgres / ns:default
ns:default 1&::::: ---------- N
R S e db-main-0
. : \‘\~ ” T ;tf/’ff. -1 role replica / version:14.6
® coroot-prometheus-server 727 SR
ns:coroot e . *“_,Q;} db-main-1

® k3s

instances:1

- \‘ \\‘
‘\\‘F%\ ,’_-" role:replica / version:14.6
~ ~ Xyw” Sa o
® k3s-agent . SR YT L -
instances:4 \—\’A R L T db-main-2
: : . e &y

S N e el . "
it LT R ”:)_// role:primary / version:14.6

’_’,"‘_,- ey o T |
@ postgres-operator s L - |
S b = <. db-main-pooler-85c86686d4... —
ns:zalando ~
- - ~ ‘\\ proxy:pgbouncer

@ postgrest Lo s db-main-pooler-85c86686d4... - /

ns:default

proxy:pgbouncer

. L7:requests per second, Errors, Latency
+ Network Round-trip-time (RTT)

- TCP: connections, failed connection attempts, retransmissions (can signify
packet loss)

coroot 1~ By

eBPF-based traces (spans)

Latency & Errors heatmap, requests per second

]
0.07/s 629/s 1258/s

errors
>10s

il | Ll w1 ! B0 - |).
B0 LASRRENY BURLNRY 0 DANE JUCDUDRRERIRY ROOMTROOAOINY AN OO UL RN LT ML LR

THEEECEELELE I T il AL CEL LR LT LT
LTE TR AT LT T |

[EEEHHTH SHHTTHTTETHTEE
Apr12 1210 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55 13:00
Client Status Duration Name Details
= app @ OK 27.04ms query PREPARE AS select title, body from articles where id = any ($1)
= app @ OK 53.30ms query insert into articles (created, title, body) values ($1, $2, $3)
I= app @ OK 38.06ms query select id from articles where created < $1 order by created desc limit $2
1= app @ OK 26.22ms query PREPARE AS select id from articles where created < $1 order by created desc limit $2

- Traces are extremely useful for identifying the particular requests within an
anomaly

- They also provide a more granular distribution of requests by latency and
status

coroot ~#

eBPF-based tracing limitations

« The OpenTelemetry SDKs generate a TRACE_ID for each request and
propagate it to other services

- When using eBPF, TRACE_IDs are not available, limiting us to capturing
individual spans (requests) rather than complete traces

« There's a tool that claims to generate TRACE _IDs by intercepting and
modifying requests, but | think it's not a good idea

Coroot supports both traditional OpenTelemetry integration and eBPF-based
tracing methods

coroot ~# BRE

eBPF-based continuous CPU profiling

Allows to explain any anomaly in CPU usage precise to the particular line of
code

Doesn’t require any code changes
Gathers per-process call stacks and aggregates them by containers

Resolution by default is 60 seconds, so you can compare profiles within
and anomaly with previous periods

coroot ~#

eBPF-based CPU profiling

CPU usage by instance, cores h a X
200m
150m
100m
50m
Om
May 02 12:50 12:55 13:00 13:.05 13:10 13:15 13:20 13:25 13:30 13:35 13:40

0l coredns-787d4945fb-cnjgz Il coredns-787d4945fb-gj9vw

| Q search

coroot ~% i

eBPF-based CPU profiling (comparison mode)

0

CPU usage by instance, cores

baseline comparison

........

200m
150m
100m
50m
Om

May 02 12:50 12:55 13:00 13:05 13:10 13:15 13:20 13:25 13:30 13:35 13:40

§ coredns-787d4945fb-cnjgz il coredns-787d4945fb-gj9vw

‘ Q_ Search l

coroot i~ e

How Coroot works

= N\ c hckHouse_

Metrics, L‘°fl§'l Logs, Traces, Profiles
coroct-node-agent Traces, Protiles

Coroot

Logs, Traces (OTLP)
Metries

Prometheus

- coroot-node-agent: gathers metrics, logs, traces, and profiles. Installed on
every node in the cluster (k8s, docker, VM, bare-metal)

« Prometheus for storing metrics

« ClickHouse for storing logs, traces, and profiles

« Coroot: Ul, alerts, predefined inspections

« You can use Coroot as an OpenTelemetry backend for logs and traces

coroot 1~ BE

Conclusion

eBPF is awesome!

It enables gathering almost any telemetry data you need without requiring
code changes.

- The performance impact on your apps is negligible.

. Want to gain system visibility in minutes? Install Coroot (Open Source,
Apache 2.0).

https://github.com/coroot/coroot

coroot ~#

Thank you, Let’s connect!

https://www.linkedin.com/in/nikolay-sivko

https://twitter.com/NikolaySivko
https://www.coroot.com

https://github.com/coroot/coroot

coroot ~#

25

https://www.linkedin.com/in/peterzaitsev
https://twitter.com/PeterZaitsev
https://www.coroot.com/

