
Large Language
Model (LLM) SecOps

Secure GenAI Applications

Omer Farooq

August 2024

CTO and Security Engineer

Auxin Security – Auxin.io

About
me

Omer Farooq

Founder and Security Engineer

Auxin Security

ofarooq@auxin.io

Agenda Introduction

LLM Application

Challenges &

Reference

Architecture

Application

Development

(Models,

Framework,

Integration)

Automating AI

using LLMOps

Securing LLM

Application using

LLMSecOps

Presentation Title
3

What is LLM SecOps?

• Large Language Model (LLM) Applications are Data

Routers

• LLMOps includes

• Automation

• Deployment

• Model Training

• Data Ingestion

• Monitoring

• LLM security focuses on protecting LLMs from

vulnerabilities and threats

4

LLMSecOps = LLM Application + LLMOps + LLM Security

LLM Application
Reference Architecture

5

LLM APPLICATION

CHALLENGES

• Validate all Integration points for Security

• Data Integration
• Authentication – Control data ingestion and employ

OAuth flows to create connections

• Authorization – Need to control data ingestion and
exposure points tightly

• Service Account and Secret Management

• Data Lifecycles and DLP
• Based on the Governance policies needed to ensure

Applications manage Data protection

• Use data cataloging and DLP solution with an
automatic classifier to detect data exposure

• AI Service API Management
• Enable API Management and Security on all LLM-

based products for security and monitoring

• Model, Token usage, and Metered usage should be
performed outside of the Service level

LLM Application Development – Where to Start?

Choosing the right LLM

Model is vital

• Understand the quality

and limitations of the

model

• Model results can vary

significantly

• Multi-Model – Text/Image

• Model cost varies

Develop Application and

LLM Separately

• Integrate LLM as a

Service in your

Application

• Keep all Data in

separate Storage

7

Use Application and Role Based authentication,

authorization to protect Data

Rapid Prototype & Fast Result

• Leverage Cloud Services

• Serverless and Managed Service

• Use purpose build Cloud Native Storage

• Vector, caching, SQL, NoSQL

• Use Existing Data Router Frameworks

• Langchain, Semantic Kernel, LlamaIndex

• Low Code Frontend

• Streamlit, Gradio

LLM Development Principles

9

• Decoupled Architecture - Keep the application and LLM service separate

• LLM requires high computation and will cost more

• Applications should be Cloud Native - Ensure Scalability, Agility, & Resiliency

• Use a framework, save time, and increase productivity

• Vector database – Embedded Storage and Performance is critical

• Test often Models do not provide consistent results

LLMOps

Data

Management

Monitoring &

Observability

Integration with

Application

Automation &

Deployment

10

LLMOPs is an extension of existing DevOps but fine grain control designed for LLM Application

• Automate

deployment CI/CD

• Automate LLM

pipeline

• All software

containers or

serverless

• Inject secrets at the

time of deployment

• Ensure all

integration

authentication

tokens are rotated

• Index for LLM Apps

• LLM Applications are

Data Routers thus,

logging and

monitoring is essential

• LLM Application

requires blob storage,

SLQ, NO-SQL, Vector,

Cache, and memory

storage

• Ensure data quality and

consistency

Strategic LLM SecOps

Prompt Injection Model Poisoning Adversarial Attacks Data Leakage Ethical Concerns

Presentation title 11

LLMSecOps is the automation of Security practices for LLM based applications and deployment process

LLM Application Security Concerns

Tactical LLM SecOps - Ensuring AI Security

Adhere to secure
coding practices
including LLM
data routing

Log AI Service
logs in

correlation with
Cloud Compute,

storage, and
network logs

Review code using
SAST and SCA

tools for
vulnerabilities and

prioritize their
remediations

12

Reuse DevSecOp
Automation
SAST, DAST,
Cloud Scans

with a focus on
Chains

Implement
content filtering

to prevent
generating
offensive or

inappropriate
content

Thank you
Auxin Security

www.auxin.io

	Default Section
	Slide 1: Large Language Model (LLM) SecOps
	Slide 2: About me
	Slide 3: Agenda

	Technical
	Slide 4: What is LLM SecOps?
	Slide 5: LLM Application Reference Architecture
	Slide 6

	Development
	Slide 7: LLM Application Development – Where to Start?
	Slide 8: Rapid Prototype & Fast Result
	Slide 9: LLM Development Principles

	LLMOps
	Slide 10: LLMOps

	LLMSecOps
	Slide 11: Strategic LLM SecOps
	Slide 12: Tactical LLM SecOps - Ensuring AI Security
	Slide 13: Thank you

