
The Next Frontier: Observability in 
Machine Learning Systems

How to Ensure Reliability and Performance in Complex Models



Who Am I?

● Software Engineer With Over 5 years of experience delivering 
digital banking solutions to financial institutions in West Africa.

● Founder of two companies in Nigeria:
○ Waste Management Company
○ Music Company (Record Label)



Slide 3: What is Model Observability? 
Model observability is the practice of validating and monitoring ML model
performance and behavior. It involves measuring critical metrics, indicators, and
processes to ensure models work as expected in production environments.



How is Model Observability Different From Model Monitoring? 
Model Monitoring:

● Collects and analyzes metrics over time.
● Detects anomalies and trends.
● Ensures models operate within 

thresholds.
● Focuses on system health.

Model Observability:

● Provides real-time insights.
● Diagnoses issues within processes.
● Reveals underlying system dependencies.
● Understands why anomalies occur.



Why is Model Observability Important? 

● Transparency: AI often functions as a "black box," lacking transparency in its 
processes.

● Error Detection: Users may not notice when large language models (LLMs) like 
GPT-4 make mistakes.

● Credibility: Unidentified errors can harm the credibility of the model.
● Understanding: Observability provides insights into why errors occur.

● Trust: Maintaining visibility and understanding of model behavior helps sustain 
user trust in AI systems.



Why is Model Observability Important: An Example 
Google’s chatbot Bard:

Right after its launch, Bard сlaimed in a promotional campaign that the James Webb 
Space Telescope took the first ever image of an exoplanet. This was not true. 

Consequences:

● Customers raised a doubt of the model’s efficiency
● Google reportedly lost $100 billion in market value 

because of the blunder



How ML Observability Helps 
ML observability enables engineers to perform root-cause analysis, identifying the 
reasons behind specific issues.

Benefits:

● Continuous performance improvement
● Ensures expected behavior in production
● Streamlined ML workflow
● Scalability
● Reduces time to resolution



Key Components of ML Observability
● Event logging: Detailed logs of model activities
● Tracing: Tracking data through stages
● Model profiling: Performance analysis
● Bias detection: Identifying and mitigating biases
● Anomaly identification: Detecting unusual patterns



Key Challenges: Data Drift
Data Drift:  

● Occurs when the statistical properties of the 
training data change over time.

● Can include covariate shift (changes in input 
feature distributions) and model drift (changes 
in the relationship between input and target 
variables).

Causes: 

● Changes in customer behavior
● Shifts in the external environment
● Demographic changes
● Product updates and upgrades



Key Challenges: Performance Degradation 
As machine learning applications gain more 
users, model performance can decline over 
time due to:

● Model overfitting
● Presence of outliers
● Adversarial attacks
● Changing data patterns



Key Challenges: Data Quality
Maintaining consistent data quality in production 
is challenging due to the reliance on various 
factors such as data collection methods, pipelines, 
storage platforms, and preprocessing techniques. 

Possible issues include:

● Missing data
● Labeling errors
● Disparate data sources
● Privacy constraints
● Inconsistent formatting
● Lack of representativeness



Model Observability Challenges in LLMs
Large Language Models (LLMs) face unique issues:

● Hallucinations: Generating nonsensical or inaccurate responses.
● No Single Ground Truth: Multiple plausible answers make evaluation difficult.
● Response Quality: Responses may be correct but irrelevant or poorly toned.
● Jailbreaks: Prompts can bypass security, leading to harmful outputs.
● Cost of Retraining: Ensuring up-to-date responses requires expensive retraining.



Evaluation Techniques for LLMs 
A tailored model observability strategy can help address challenges and improve evaluation. 

Common techniques include:

● User Feedback: Collect and assess reports on bias and misinformation.
● Embedding Visualization: Compare response and prompt embeddings for relevance.
● Prompt Engineering: Test various prompts to enhance performance and detect issues.
● Retrieval Systems: Ensure LLMs fetch correct information from relevant sources.
● Fine-tuning: Adjust the model with domain-specific data instead of full retraining.



Challenges in Computer Vision 
● Image Drift: Changes in image properties over time, like lighting and background.
● Occlusion: Objects blocking the primary object, leading to misclassification.
● Lack of Annotated Samples: Difficulty in finding labeled images for training.
● Sensitive Use Cases: Critical applications like medical diagnosis and self-driving 

cars where errors can be disastrous.

An example of occlusion:



Components to Address Challenges in Computer Vision 
● Monitoring Metrics: Measure image quality and model performance.
● Specialized Workforce: Involve domain experts in the labeling process.
● Quality of Edge Devices: Monitor remote devices like cameras and sensors in real-

time.
● Label Quality: Ensure high-quality labeling with automation and regular reviews.
● Domain Adaptation: Indicate when to fine-tune models based on data divergence.



Monitoring Techniques in ML Observability

● Standard ML Metrics: Precision, recall, F1 score, AUC ROC, MAE.

● LLM Metrics: BLEU, ROUGE, METEOR, CiDER for automated scoring. Use 
human feedback, custom metrics, and RLHF for human-based assessments.

● CV Metrics: Mean average precision (mAP), intersection-over-union (IoU), 
panoptic quality (PQ) for tasks like object detection, classification, and 
segmentation.



Explainability Techniques in Standard ML Systems

Explainability is the capability of observability tools to provide clear, understandable insights into 
system behavior and performance, enabling stakeholders to easily interpret and act on the data.

Two techniques you can use to interpret a model’s decision-making process:

● SHAP: Shapley Additive Explanations (SHAP) computes the Shapley value of each feature, 
indicating feature importance for global and local explainability.

● LIME: Local Interpretable Model-Agnostic Explanations (LIME) perturbs input data to generate 
fake predictions. It then trains a simpler model on the generated values to measure feature 
importance.



Explainability Techniques in LLMs 

● Attention-based Techniques: Visualize which words the model considers most 
important in an input sequence. Useful in models like ChatGPT, BERT, and T5 
that use transformer architecture.

● Saliency-based Techniques: Compute gradients with respect to input features to 
measure their importance. Masking features and analyzing output variations can 
reveal crucial features.



Explainability Techniques in CV 

● Integrated Gradients: Builds a baseline image and adds features gradually, 
computing gradients to identify important features for object prediction.

● XRAI: Enhances Integrated Gradients by highlighting pixel regions instead of 
single pixels, segmenting similar image patches and computing saliency for each 
region.

● Grad-CAM: Generates a heatmap for CNN models, highlighting important 
regions by overlaying the heatmap on the original image.



Explainability Techniques in CV 

Integrated Gradients XRAI Grad-CAM 



Future Trends in Model Observability 

● User-Friendly XAI: Developing techniques to generate simple, understandable 
explanations.

● AI Model Fairness: Using XAI to visualize learned features and detect bias.
● Human-Centric Explainability: Combining insights from psychology and 

philosophy for better explainability methods.
● Causal AI: Highlighting why a model uses particular features for predictions, 

adding value to explanations and increasing robustness.



Thanks for Attention


