GREETINGS NOBLE ONE... LET’S BEGIN!

PAUL EDWARD

12 YEARS EXPERIENCE

OPEN SOURCERER

IWRITE- ISPEAK - IBUILD

BOXING ADVOCATE

<t

tpe 50BN AR B RAERSAPEEDGcADTIAU0a } | sk Sie—1t L
BBINERA2 G Ipnanafming iaslnang ' e
"I FOIAE LG ol BE G108

i _.-'-l ,.

fanisaraqs

The race you don't want to win

RACE CONDITION

Edward Paul

<t

What is RACE CONDITION?

“A flaw in system design where multiple processes
compete for the same resources, leading to unpredictable
outcomes.”

Real-world impact in software:

Simultaneous access to a database record, like wallet
balances.

Leads to inconsistencies or vulnerabilities.

SHARE-
RESOURCE

<t

The Cost of a Race Condition
Real-World Examples of Costly Mistakes

e Knight Capital Group (2012): Lost $440 million in 45
minutes due to a race condition.

« NASDAQ Facebook IPO (2012): Paid over $40 million in
compensation after system failures.

e In October 2024, GTBank's system upgrade caused two
weeks of transaction failures and account issues,
highlighting the need for robust testing during upgrades.

The smallest oversight can have catastrophic consequences.

Case Study: Incident Overview
Firsthand experience with
Race Condition

What happened?
Attackers exploited a race condition in transaction processing.

Technical details:

Simultaneous withdrawal requests processed incorrectly.
Database recorded both withdrawals, causing double-spending.

Impact: Financial losses and system downtime.

<t

The Investigation and Forensics
“Playing Detective”

Steps taken:
e Reviewinglogsto trace activity.
e Recreating the issue in a controlled environment.

Tools used:
* Log analyzers, debugging frameworks, monitoring tools.

Key finding: Lack of synchronization in database transactions.

Strategies to Avoid Race Conditions
The Fix: Building Resilient Systems

e Usedistributed locks to control resource access.

e Implement idempotent operationsin APls.

e Usetransaction logsand rollback mechanisms.

e Introduce rigorous testing: simulate high concurrency scenarios.

<t

Mitigation and Countermeasures
“Fixing the Flaw”

Immediate actions:
e Disable vulnerable features.
e Deploy patches.

Long-term strategies:
e Introduce locking mechanisms for transaction handling.
e Improve monitoring and alert systems.

4

<t

Preventive Measures and Best Practices
“Avoiding Race Conditions”

Best practices:
e Uselocksortransactionsin database operations.
e Test concurrency under high loads.
e Conduct thorough code reviews focused on timing issues.
e Develop with security in mind:
e Anticipate edge cases.
e Regularly test for vulnerabilities.

Live Demonstration

e Asimulation of the race condition vulnerability.
e Walkthrough of the exploit and the implemented solutions.

<t

Lessons Learned

Key insights:
e Small flaws can lead to catastrophic outcomes.
e Proactive testing and monitoring can prevent majorissues.
e Security requires a team effort.

CONSENTLY
TONSINOULY SEC]LéRE

How to apply these lessons to other systems:

DESIGN
Seempute - PRINCIPLES

e Emphasize secure design and testing at every stage.

¢

Conclusion:
The Importance of Vigilance

The critical role of security in software development:
e |t'snotaone-time effort;it’s continuous.

e Test thoroughly, monitor systems, and never
underestimate small flaws.

"Security isn’t a sprint—it’s a marathon.

b

Let’s Connect

L ¢ EDWARD PAUL

m ‘ THEINFINITYPAUL

@) THEINFINITYPAUL
[© INFINITY PAUL

