
‹#›

PAUL EDWARD

12 YEARS’ EXPERIENCE

OPEN SOURCERER

IWRITE- ISPEAK - IBUILD

BOXING ADVOCATE

GREETINGS NOBLE ONE... LET’S BEGIN!

The race you don’t want to win:
RACE CONDITION

‹#›

Edward Paul

“A flaw in system design where multiple processes
compete for the same resources, leading to unpredictable
outcomes.”

Real-world impact in software:
Simultaneous access to a database record, like wallet
balances.
Leads to inconsistencies or vulnerabilities.

What is RACE CONDITION?

‹#›

The Cost of a Race Condition
Real-World Examples of Costly Mistakes

Knight Capital Group (2012): Lost $440 million in 45
minutes due to a race condition.

NASDAQ Facebook IPO (2012): Paid over $40 million in
compensation after system failures.

In October 2024, GTBank's system upgrade caused two
weeks of transaction failures and account issues,
highlighting the need for robust testing during upgrades.

‹#›

The smallest oversight can have catastrophic consequences.

Case Study: Incident Overview
Firsthand experience with
Race Condition

‹#›

What happened?
Attackers exploited a race condition in transaction processing.

Technical details:
Simultaneous withdrawal requests processed incorrectly.
Database recorded both withdrawals, causing double-spending.

Impact: Financial losses and system downtime.

The Investigation and Forensics
“Playing Detective”
Steps taken:

Reviewing logs to trace activity.
Recreating the issue in a controlled environment.

Tools used:
Log analyzers, debugging frameworks, monitoring tools.

Key finding: Lack of synchronization in database transactions.

‹#›

Strategies to Avoid Race Conditions
The Fix: Building Resilient Systems

Use distributed locks to control resource access.
Implement idempotent operations in APIs.
Use transaction logs and rollback mechanisms.
Introduce rigorous testing: simulate high concurrency scenarios.

‹#›

Mitigation and Countermeasures
“Fixing the Flaw”
Immediate actions:

Disable vulnerable features.
Deploy patches.

Long-term strategies:
Introduce locking mechanisms for transaction handling.
Improve monitoring and alert systems.

‹#›

Preventive Measures and Best Practices
“Avoiding Race Conditions”

‹#›

Best practices:
Use locks or transactions in database operations.
Test concurrency under high loads.
Conduct thorough code reviews focused on timing issues.
Develop with security in mind:
Anticipate edge cases.
Regularly test for vulnerabilities.

Live Demonstration
A simulation of the race condition vulnerability.
Walkthrough of the exploit and the implemented solutions.

‹#›

Lessons Learned

‹#›

Key insights:
Small flaws can lead to catastrophic outcomes.
Proactive testing and monitoring can prevent major issues.
Security requires a team effort.

How to apply these lessons to other systems:
Emphasize secure design and testing at every stage.

Conclusion:
The Importance of Vigilance
The critical role of security in software development:

It’s not a one-time effort; it’s continuous.

Test thoroughly, monitor systems, and never
underestimate small flaws.

‹#›

"Security isn’t a sprint—it’s a marathon.

Let’s Connect

‹#›

EDWARD PAUL

THEINFINITYPAUL

THEINFINITYPAUL

INFINITY PAUL

