ANTI-FRAUD FRAMEWORK
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OUR AGENDA TODAY:

OVERVIEW OF AN ANTI-FRAUD SYSTEM:
HOW IT WORKS AND WHY IT

MATTERS

> OVERVIEW OF AN ANTI-FRAUD SYSTEM:
HOW IT WORKS AND WHY IT MATTERS

A case study from FinTech
A case study from GameDev

> KEY ASPECTS OF ML/ANALYTICAL
DESIGN IN ANTI-FRAUD SYSTEMS

Integration of diverse data sources
Addressing multiple tracking objectives

> INFRASTRUCTURE SOLUTIONS
AND IMPLEMENTATION STRATEGIES

> REAL-TIME MODELING VS. OFFLINE MODELING
> MONITORING MECHANISMS

> RESPONDING TO NEW THREATS.
WHAT DO WE NEED EXCEPT ML
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WHAT IS ANTI-FRAUD?

Fraud - customer action that are not intended by the company, which result in a deterioration of key metrics.
the client uses internal inefficiencies of the company's mechanisms, fraud is called endogenous, otherwise

exogenous.
decision
Analytics

metric's
value

user_uid

If
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USERS ARE AVOIDING

Level 1

..........

Level 2

Time

Level 3

Level 4

User avoid paywall
using dishonest
algorithms

Such users go
through game much
faster

Such users pay
much less
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HOW T0 TAKE ADVANTAGE

OF FINTECH COMPANIES

EUR cash -

5 hours later

EURUSD rate
increased

1

—> Do nothing

[

EURUSD sell
billing created

\

uSD

Transaction

v

EURUSD rate
decreased

—»
executed accou nt
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BUILDING AN
PLATFORM

The idea is to customise a pipeline of the model starting from
a simple concept so we get a complex framework in the last slide.

Key concepts

Actual value /

- Gradient boosting

- Autoregression

- CI prediction

- Is Actual value in CI
predicted or not?

Predicted value
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SUME COMMENT
REGARDING THE MODEL

That's good That's bad

Quantile regressions with data

e Naive Tree/regression models
with enrichments e Deep learning
Monte carlo probability estimates ¢ RNN
Tree-based XGB, LightGBM, and e Temporal fusion Transformers
CatBoost Models e Lag-Llama

Automatic ARIMA-GARCH
Identifying trend and variance
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BUILDING AN ANTI-FHAUI]
PLATF ORIV AcTER TRAMNG T NODEL ON usER

DATA OFFLINE, WE DEPLOY IT:

Metrics ML
> Storage ————— 5 model Kubernetes operates the model within
S applying . .
e a persistent pod that monitors data from
Kafka.

User
daa PEkata /]
K’ User table

Reloading the model based on a
data

cooldown period or a timeframe
e Alert/action suitable for an anti-fraud platform.
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WHAT IS THE CHALLENGE?
THE LACK OF DATA

» It’s not possible to implement the model by using user data only.

» The complicated data sources such as currency
conversion rates should be added.

» In production, the model is "waiting" for all the data,
as we see our data from Kafka before the external source
needs us to do time-based joins.
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DATA SOURCES

Metrics ML

> Storage Ty S miodel

applying

sata KM T

—_—

User table
data
Market
data
provider

Product
probability
check

|

Jﬁ Aggregation —»

Alert/action
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WHAT IS THE CHALLENGE?
THE TARGETS ARE T0O DIFFERENT

» For one quality metric, let’s say, Payments_cost, many related
costs/details can be attributed to it that deal with one type of fraud.

» In case there are multiple targets, stacking different models
could be worth considering.

»  When it comes to supervised gradient boosting, it is right to see it as some
sort of smart ifs. Don't forget: the smartest if can be determined only by you.
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STACKING DIFFERENT MODELS AND FILTERS

User
data

Market
data
provider

Metrics ML
Storage 3 model
3 applying 3

ML
model
applying 2

Metrics
Storage

ML
model
applying 1

Metrics
Storage

Desicion
making
algo

Product
probability
check

Aecieslion User table
—>
data

Alert/action
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INFRASTRUCTURE FEATURES

» In production, it’s crucial to perform fast joins of large
datasets or create complex data samples.

» Equally important to access historical data by user_uid.

The best practices working with real-time modeling include preserving the
previous state of user data and filtering the data stream that feeds into the model.
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INFRASTRUCTURE FEATURES

99% of time normal version, 1% high load simplified version

Metrics ML
» Storage » model
3 applying 3

Metrics " / ML ;
;|

» Storage model

2 . 4 trlno applying 2

Metrics ML

Ly Storage T » model
1 applying 1

~— v

User 90 Desicion
data fka ] m;:ong
p— . User table

Aggregation —»

data

Market Product

data _| probability
provider chec

Alert/action
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OFFLINE SUPPORT TEAM

We need guys who are looking at the screen:

e P1-prob that the catch one with ML
e P2 -prob that analytical filter catch one
e P3-prob that operational team catch one

Overall P =1 - (1-P1)(1-P2)(1-P3)
Good precision!

The contribution of the operational and analytical team to improving the quality of

detection cannot be underestimated.
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OFFLINE PART OF THE PLATFORM

99% of time normal version, 1% high load simplified version
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MONITORING MECHANISMS

Online and Offline
Model Metrics:

Payment Cost
Technical metrics
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FPR
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Visualisation and the importance of case review to understand what
*exactly™ is going on
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v

99% of time normal version, 1% high load simplified version
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