Zero Downtime ML Observability

Ensuring Reliability and Insights Without Interruptions

Payal Godhani Principal Engineer – Oracle Cloud Infrastructure

 \mathbf{O}

The Two Worlds: ML vs SRE

ML Engineers	SREs
Build Models	Run Systems
Experimentation - Driven	SLA/SLO-driven
Focus on accuracy	Focus on uptime, latency
Offline evaluation	Real-time production metrics

Why Traditional Observability Isn't Enough?

+

0

- Logs, metrics, and traces tell us if a service is *up*, but not if a model is *right*.
- Errors may be silent—i.e., prediction is returned, but it's wrong or biased.
- Drift in data can degrade performance over time, even if infrastructure is stable.
- No standard SLOs for ML quality (accuracy, fairness, etc.)

SRE Challenges in ML Systems

+

What is ML Observability?

"ML Observability is the ability to monitor, debug, and understand ML systems in production."

Model Evaluation Metrics Monitoring the accuracy and EB Data Quality consistency of data. Tracking the distribution of Feature Distribution features over time. Evaluating model Model Performance performance metrics over time. Identifying changes in Drift Detection input/output data distributions. Keeping track of different 30 Model Versioning versions of the model. Comparing model A/B Testing performance using live traffic.

System View: ML in Production

\$2% inspett

	Drift Type	What It is	Example	Why it Happens
	Prediction Drift	Change in the distribution of model outputs over time	Recommendation model starts suggesting only premium products	Changes in input data patterns, user behavior, or seasonal trends
	Data Drift	Input feature distribution differs from training data	Surge in traffic from a new user demographic not seen during training	Business expansion, new product lines, marketing campaigns
	Feature Drift	Shift in values of individual input features	"User location" feature shifts from mostly urban to suburban users	Change in customer base, regional promotion, data collection bias
	Feature Attribution Drift	Change in feature importance across retrains	"Brand" becomes more important than "price" in product rankings	Frequent retraining, changing model weights, label noise in retrains

Monitoring Prediction and Data Drift

What Good ML Observability Looks Like

Adapting SRE Practices in ML

Tools for Detecting Drift

Amazon SageMaker

High availability for critical ML services

Why Zero Downtime Matters ?

Continuous monitoring without halting predictions

Ensures confidence in deployments and real-time systems

Zero Downtime ML Observability

Final Thoughts

+

0

"ML systems fail differently. They rot silently. They don't always crash, but they decay. As SREs, we must evolve our observability mindset to include these nuances—and build systems that don't just stay up, but stay smart."