Building Real-Time Al
Fraud Prevention
Systems

for Gig Platforms in Rust

Prabhakar Singh, Senior Software Engineer at Meta

Agenda

The Gig Economy Fraud Challenge Why Rust for Fraud Prevention

Unigue challenges, millisecond decision requirements, and why Memory safety, performance, and fearless concurrency advantages
traditional solutions fall short for security-critical systems

Multi-Layered Architecture Real-World Results & Future Applications

Building with Tokio, Candle ML, Petgraph and implementing stream Case studies from food delivery and ride-sharing platforms, plus

processing, zero-copy deserialization emerging applications

The Gig Economy Fraud Challenge

Millisecond Decision Windows Decentralized Operations

Fraud prevention systems must approve/reject transactions within 50- Widely distributed workforce and customers create complex
100ms to maintain seamless user experience geographic fraud patterns

Instant Payment Cycles Al Processing Requirements

Immediate cashouts mean potential fraud losses cannot be recovered ML models require high-throughput processing of thousands of
post-transaction transactions per minute

Legacy systems built with Python, Java, or Node.js often struggle with these requirements, creating painful tradeoffs between speed and accuracy.

Common Fraud Patterns in Gig Platforms

e Account Takeover: Legitimate accounts compromised through
credential stuffing

e Synthetic Identity: Fabricated identities created by combining real and
fake information

e Worker-Customer Collusion: Coordinated fraud between delivery
drivers and customers

e GPS Spoofing: Falsifying location data to manipulate ride/delivery

assignments

e Payment Method Fraud: Using stolen payment methods for immediate

Dig ecceters
cocltsing

Fake accounts ad —

| Acccond=bleceooners - cashouts

@ a corcosones
Clnopdenng

Aokaccount takeovees..
Driver-customer colivainglen

These patterns evolve rapidly, requiring systems that can adapt quickly to new fraud vectors while maintaining high performance.

Why Rust for Fraud Prevention?

Memory Safety Without Garbage
Collection

Eliminates entire classes of bugs (buffer
overflows, use-after-free) that can compromise
fraud systems without runtime penalty

m——
()

RUST CRAB

C++-Level Performance

Zero-cost abstractions and LLVM-powered
optimizations deliver processing speeds rivaling
C++ with development velocity closer to Python

Fearless Concurrency

Ownership and borrowing model prevents data
races in concurrent processing, critical for high-
throughput fraud detection

Real-World Results: Performmance Comparison

Key Metrics from Production

Python + TensorFlow e Rust achieves 93% of C++'s raw performance
e 6.2x faster than Java implementation

Node js e 12.4x faster than Python with TensorFlow
e (Consistent p99 latency under 35ms

Java + Spring e 90% reduction in CPU utilization compared to Python

C++

Rust

1 1 1
0 1,500 3,000 4,500

Data from benchmark tests on a major food delivery platform processing 50,000+ orders per hour.

Multi-Layered Rust Architecture for Fraud Prevention

1 Real-Time Stream Processing with Tokio

Asynchronous processing of transaction streams using Tokio and Futures, drastically reducing detection latency

2 Rule-Based Detection Layer

High-speed pattern matching using Rust's match expressions and custom DSLs

3 Statistical Anomaly Detection

Time-series analysis with statistical models implemented in pure Rust

4 ML Classification with Candle

Fast ML inference using Candle for deep learning models with CUDA acceleration

5 Graph Analysis with Petgraph

Network analysis for detecting coordinated fraud rings

Rust-Powered Innovations

(=) ®) 5

Async Stream Processing Zero-Copy Deserialization WASM-Compiled Modules
Tokio and Futures enable processing Serde implementations with zero-copy parsing Secure, portable fraud detection logic that runs
thousands of transactions per second with for high-throughput JSON/Protobuf data consistently across diverse environments

minimal latency

/1 Zero-copy deserialization with Serde

// Transaction processing with Tokio #[derive(Deserialize)]
let mut stream = StreamExt::throttle(struct Transaction<'a> {
transactions, Duration::from_millis(1) #[serde(borrow)]
i user_id: &'a str,
amount: f64,
while let Some(tx) = stream.next().await #[serde(borrow)]
{ device_id: &'a str,
let verdict = detect_fraud(tx).await?; }

decisions.push(verdict).await?;

ML Inference with Candle

Why Candle for ML in Fraud Detection?

Pure Rust ML framework - memory safety throughout the stack
CUDA and Metal acceleration for GPU inference

Supports ONNX model imports from PyTorch/TensorFlow

No Python dependencies in production

Tight integration with Rust's type system

Graph Analysis for Fraud
Networks

. FraUd patter ns] Detecting Coordinated Fraud with Petgraph

? . . ' Rust's Petgraph crate enables efficient graph algorithms for finding fraud networks:

e Connected component analysis reveals collusion between workers and customers

e Centrality measures identify key nodes in fraud networks

e Graph embeddings detect structural similarities in transaction patterns

e Temporal graph analysis tracks evolving fraud patterns over time

Real-World Example: Driver-Customer Collusion

A food delivery platform detected a sophisticated fraud ring involving 32 delivery
drivers and 18 customers placing fake orders. Graph analysis revealed the pattern
when standard ML models missed it.

// Find suspicious components in the graph

let components = petgraph::algo::kosaraju_scc(&graph);
for component in components {

if component.len() > 5 {
analyze_potential_fraud_ring(component);

}
}

Privacy-Preserving Fraud Detection

Homomorphic Encryption

Rust implementations of FHE libraries allow
computation on encrypted data without
decryption

Secure Enclaves

Rust code running in TEEs provides hardware-
level isolation for sensitive fraud logic

(o

2

Q

Federated Learning

Distributed ML training across devices/regions
without centralizing sensitive data

Differential Privacy

Adding calibrated noise to protect individual
privacy while preserving statistical utility

Rust's strong type system and zero-cost abstractions make it possible to implement these advanced privacy techniques without prohibitive performance

penalties.

Case Study: Major Ride-Sharing Platform

Challenge

Platform was losing $3.2M monthly to sophisticated fraud schemes including GPS
spoofing and synthetic identity creation.

Rust Solution
Replaced Python-based system with Rust microservices using:

e Tokio for async HTTP API and stream processing
e Custom Rust implementation of device fingerprinting
e WASM modules for distributed fraud rules

e (Candle for ML model inference

Results

87% reduction in fraud losses, 65% decrease in false positives, and 99.98% uptime over 12
months.

Emerging Applications in Rust Fraud Prevention

Behavioral Biometrics (Now)

Rust processing of touch dynamics, typing patterns, and device
motion signals to authenticate users continuously without explicit
verification steps

Advanced FHE (12-24 months)

Practical homomorphic encryption implementations in Rust
providing order-of-magnitude performance improvements,
enabling private computation on sensitive fraud signals

Explainable Al Pipelines (6-12 months)

Rust implementations of SHAP, LIME, and custom explainability
tools using Candle and Burn ML frameworks to provide human-
interpretable fraud detection decisions

GPGPU Acceleration (24+ months)

Native Rust GPU programming for fraud detection using emerging
frameworks like Rust-GPU and Candle's expanded CUDA
capabilities

Key Takeaways

Performance Matters Safety Is Non-Negotiable Ecosystem Is Maturing

Rust delivers near-C++ performance with Memory safety guarantees and concurrency Crates like Tokio, Candle, and Petgraph now
development velocity approaching higher- without data races eliminate entire classes of provide production-ready foundations for
level languages, critical for millisecond-scale vulnerabilities in security-critical systems sophisticated fraud prevention systems

fraud decisions

