
Building Real-Time AI
Fraud Prevention
Systems
for Gig Platforms in Rust
Prabhakar Singh, Senior Software Engineer at Meta

Agenda

The Gig Economy Fraud Challenge
Unique challenges, millisecond decision requirements, and why

traditional solutions fall short

Why Rust for Fraud Prevention
Memory safety, performance, and fearless concurrency advantages

for security-critical systems

Multi-Layered Architecture
Building with Tokio, Candle ML, Petgraph and implementing stream
processing, zero-copy deserialization

Real-World Results & Future Applications
Case studies from food delivery and ride-sharing platforms, plus
emerging applications

The Gig Economy Fraud Challenge

Millisecond Decision Windows
Fraud prevention systems must approve/reject transactions within 50-
100ms to maintain seamless user experience

Decentralized Operations
Widely distributed workforce and customers create complex
geographic fraud patterns

Instant Payment Cycles
Immediate cashouts mean potential fraud losses cannot be recovered
post-transaction

AI Processing Requirements
ML models require high-throughput processing of thousands of
transactions per minute

Legacy systems built with Python, Java, or Node.js often struggle with these requirements, creating painful tradeoffs between speed and accuracy.

Common Fraud Patterns in Gig Platforms
Account Takeover: Legitimate accounts compromised through
credential stuffing

Synthetic Identity: Fabricated identities created by combining real and

fake information

Worker-Customer Collusion: Coordinated fraud between delivery
drivers and customers

GPS Spoofing: Falsifying location data to manipulate ride/delivery
assignments

Payment Method Fraud: Using stolen payment methods for immediate
cashouts

These patterns evolve rapidly, requiring systems that can adapt quickly to new fraud vectors while maintaining high performance.

Why Rust for Fraud Prevention?

Memory Safety Without Garbage
Collection
Eliminates entire classes of bugs (buffer

overflows, use-after-free) that can compromise
fraud systems without runtime penalty

C++-Level Performance
Zero-cost abstractions and LLVM-powered
optimizations deliver processing speeds rivaling
C++ with development velocity closer to Python

Fearless Concurrency
Ownership and borrowing model prevents data
races in concurrent processing, critical for high-
throughput fraud detection

Real-World Results: Performance Comparison

Python + TensorFlow

Node.js

Java + Spring

C++

Rust

0 1,500 3,000 4,500

Key Metrics from Production

Rust achieves 93% of C++'s raw performance

6.2x faster than Java implementation

12.4x faster than Python with TensorFlow

Consistent p99 latency under 35ms

90% reduction in CPU utilization compared to Python

Data from benchmark tests on a major food delivery platform processing 50,000+ orders per hour.

Multi-Layered Rust Architecture for Fraud Prevention
1 Real-Time Stream Processing with Tokio

Asynchronous processing of transaction streams using Tokio and Futures, drastically reducing detection latency

2 Rule-Based Detection Layer
High-speed pattern matching using Rust's match expressions and custom DSLs

3 Statistical Anomaly Detection
Time-series analysis with statistical models implemented in pure Rust

4 ML Classification with Candle
Fast ML inference using Candle for deep learning models with CUDA acceleration

5 Graph Analysis with Petgraph
Network analysis for detecting coordinated fraud rings

Rust-Powered Innovations

// Transaction processing with Tokio
let mut stream = StreamExt::throttle(
 transactions, Duration::from_millis(1)

);

while let Some(tx) = stream.next().await
{
 let verdict = detect_fraud(tx).await?;
 decisions.push(verdict).await?;

}

Async Stream Processing
Tokio and Futures enable processing
thousands of transactions per second with
minimal latency

// Zero-copy deserialization with Serde
#[derive(Deserialize)]
struct Transaction<'a> {
 #[serde(borrow)]

 user_id: &'a str,
 amount: f64,
 #[serde(borrow)]
 device_id: &'a str,
}

Zero-Copy Deserialization
Serde implementations with zero-copy parsing
for high-throughput JSON/Protobuf data

WASM-Compiled Modules
Secure, portable fraud detection logic that runs
consistently across diverse environments

ML Inference with Candle
Why Candle for ML in Fraud Detection?

Pure Rust ML framework - memory safety throughout the stack

CUDA and Metal acceleration for GPU inference

Supports ONNX model imports from PyTorch/TensorFlow

No Python dependencies in production

Tight integration with Rust's type system

Graph Analysis for Fraud
Networks

Detecting Coordinated Fraud with Petgraph
Rust's Petgraph crate enables efficient graph algorithms for finding fraud networks:

Connected component analysis reveals collusion between workers and customers

Centrality measures identify key nodes in fraud networks

Graph embeddings detect structural similarities in transaction patterns

Temporal graph analysis tracks evolving fraud patterns over time

// Find suspicious components in the graph
let components = petgraph::algo::kosaraju_scc(&graph);
for component in components {
 if component.len() > 5 {
 analyze_potential_fraud_ring(component);

 }
}

Real-World Example: Driver-Customer Collusion
A food delivery platform detected a sophisticated fraud ring involving 32 delivery
drivers and 18 customers placing fake orders. Graph analysis revealed the pattern
when standard ML models missed it.

Privacy-Preserving Fraud Detection

Rust's strong type system and zero-cost abstractions make it possible to implement these advanced privacy techniques without prohibitive performance
penalties.

Homomorphic Encryption
Rust implementations of FHE libraries allow

computation on encrypted data without
decryption

Federated Learning
Distributed ML training across devices/regions
without centralizing sensitive data

Differential Privacy
Adding calibrated noise to protect individual

privacy while preserving statistical utility

Secure Enclaves
Rust code running in TEEs provides hardware-

level isolation for sensitive fraud logic

Case Study: Major Ride-Sharing Platform
Challenge

Platform was losing $3.2M monthly to sophisticated fraud schemes including GPS
spoofing and synthetic identity creation.

Rust Solution

Replaced Python-based system with Rust microservices using:

Tokio for async HTTP API and stream processing

Custom Rust implementation of device fingerprinting

WASM modules for distributed fraud rules

Candle for ML model inference

Results

87% reduction in fraud losses, 65% decrease in false positives, and 99.98% uptime over 12
months.

Emerging Applications in Rust Fraud Prevention
1Behavioral Biometrics (Now)

Rust processing of touch dynamics, typing patterns, and device

motion signals to authenticate users continuously without explicit
verification steps 2 Explainable AI Pipelines (6-12 months)

Rust implementations of SHAP, LIME, and custom explainability
tools using Candle and Burn ML frameworks to provide human-
interpretable fraud detection decisions3Advanced FHE (12-24 months)

Practical homomorphic encryption implementations in Rust

providing order-of-magnitude performance improvements,
enabling private computation on sensitive fraud signals 4 GPGPU Acceleration (24+ months)

Native Rust GPU programming for fraud detection using emerging
frameworks like Rust-GPU and Candle's expanded CUDA
capabilities

Key Takeaways

Performance Matters
Rust delivers near-C++ performance with

development velocity approaching higher-
level languages, critical for millisecond-scale
fraud decisions

Safety Is Non-Negotiable
Memory safety guarantees and concurrency

without data races eliminate entire classes of
vulnerabilities in security-critical systems

Ecosystem Is Maturing
Crates like Tokio, Candle, and Petgraph now

provide production-ready foundations for
sophisticated fraud prevention systems

