
Confidential Copyright ©

1

Cloud Native Resilience:
Building Scalable and
Fault-Tolerant Systems

Designing for High Availability in
Dynamic Cloud Environments

Confidential Copyright ©

● Introduction to Cloud Native Concepts
● Key Design Principles for Resilience
● Microservices Architecture
● Containerization & Orchestration
● Automation Strategies
● Code Examples & Demonstrations
● Q&A Session

Agenda
2

Confidential Copyright ©

● Definition: What does "Cloud Native" mean?
● Characteristics: Scalability, elasticity, resilience
● Benefits: Faster innovation, improved resource utilization, dynamic scalability

Introduction to Cloud
Native

3

Confidential Copyright ©

● Definition of Resilience: The ability to handle and recover from failures gracefully.
● Importance: Ensures high availability, maintains user experience.
● Impact: Reduces downtime and mitigates business risks.
● Real-World Examples: Brief case studies or examples of resilient systems vs.

systems that failed.

Why Resilience Matters
4

Confidential Copyright ©

● Redundancy: Duplicate critical components to prevent single points of failure.
● Loose Coupling: Minimize dependencies between components.
● Fail-Fast & Graceful Degradation: Detect issues early and reduce functionality

smoothly.
● Monitoring & Automated Recovery: Use tools for real-time monitoring and

self-healing.

Key Design Principles for
Resilience

5

Confidential Copyright ©

● Definition: Architectural style where applications are composed of small,
independent services.

● Key Benefits:
○ Independent Deployment: Services can be updated without affecting the

entire system.
○ Scalability: Scale specific components based on demand.
○ Isolation: Faults in one service donʼt compromise the entire system.

● Comparison: Microservices vs. Monolithic Architecture

Microservices
Architecture Overview

6

Confidential Copyright ©

Code Demo: Microservices
Implementation

7

Confidential Copyright ©

Definition: Packaging applications and dependencies into isolated, portable
containers.

Core Benefits:

● Consistency: Run the same container across different environments.
● Isolation: Encapsulate application components to reduce conflicts.
● Portability: Easily move and deploy containers in any environment.

Tool Highlight: Docker as the leading container platform.

Containerization
Fundamentals

8

Confidential Copyright ©

Use an official Java runtime as a parent image
FROM openjdk:11-jre-slim

Set the working directory in the container
WORKDIR /app

Copy the packaged jar file into the container
COPY target/greeting-service.jar /app/greeting-service.jar

Expose the port the app runs on
EXPOSE 8080

Run the jar file
ENTRYPOINT ["java", "-jar", "greeting-service.jar"]

Code Demo: Dockerizing a
Microservice
9

Confidential Copyright ©

Why Orchestrate?

● Automatic scaling
● Health monitoring and self-healing
● Efficient resource management

Kubernetes Overview:

● Pods: The smallest deployable unit.
● Deployments: Managing replica sets for scaling and updates.
● Services: Exposing applications reliably.

Container Orchestration
with Kubernetes

10

Confidential Copyright ©

CI/CD Pipelines:

● Automated testing
● Seamless integration and deployment

Self-Healing Infrastructure:

● Auto-scaling based on load
● Automated restart and failover mechanisms

Monitoring & Logging Integration:

● Tools like Prometheus, Grafana, ELK stack for proactive alerts

Automation Strategies
11

Confidential Copyright ©

name: CI/CD Pipeline

on:
 push:
 branches: [main]
 pull_request:
 branches: [main]

jobs:
 build-and-test:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout Code
 uses: actions/checkout@v2

 - name: Set up JDK 11

Code Demo: CI/CD
Pipeline

12

Confidential Copyright ©

Key Monitoring Metrics:

● CPU, memory, and network utilization
● Application response time and error rates
● Custom business metrics

Tools & Setup:

● Prometheus: Metrics collection and alerting
● Grafana: Visualization and dashboards

Self-Healing Demonstration:

● Auto-scaling events (triggered by high CPU usage)
● Automated restart policies upon failure detection

Integrating Monitoring &
Self-Healing

13

Confidential Copyright ©

Case Study Overview:

● Example: A major e-commerce platformʼs migration to a cloud native architecture
● Challenges faced: Downtime, scalability issues, rapid deployment needs

Best Practices:

● Implementing redundancy and fault isolation with microservices
● Containerizing applications for consistent deployment
● Leveraging CI/CD and automated monitoring for proactive maintenance

Lessons Learned:

● Importance of resilience in production
● Continuous improvement through feedback and automation

Real-World Case Study &
Best Practices

14

Confidential Copyright ©

Conclusion:

● Recap of cloud native resilience principles
● Importance of microservices, containerization, and automation

Call to Action:

● Encourage exploring these practices further
● Invitation to connect for further discussion

Conclusion
15

