
Scaling OpenTelemetry Collectors using Kafka

Pranay Prateek (Co-Founder, SigNoz)

About Me

Co-Founder @ SigNoz

ex-Product @ Microsoft

Love reading & trekking

SigNoz - Open Source Observability Platform
OpenTelemetry-Native Traces, Metrics & Logs in a single pane

🌟🌟 17K+ GitHub stars

👫👫 4000+ members
in slack community

💻💻 130+ contributors

What is OpenTelemetry?

Why is OpenTelemetry important?

● 2nd fastest growing project in CNCF (only after Kubernetes)
● No vendor lock-in, open source instrumentation
● Becoming the default standard for instrumentation and introducing open

standards for instrumentation
● Provides instrumentation sdks for metrics, traces and logs. New signals like

profiling in progress.
● SigNoz is based natively on OpenTelemetry for instrumentation

More details - https://opentelemetry.io/

https://opentelemetry.io/

Introduction to OpenTelemetry Collector

Three key components

1. Receivers

2. Processors

3. Exporters

Architecture of SigNoz Cloud (single tenant) without Kafka

Issues with scaling with just Opentelemetry Collector

● Tenant or DB downtime caused the agents report 5xx and possibly loss of
data after a few minutes

● Tenant has to scale according to the ingestion rate. If ingestion rate spikes to
10x and drops to limits in a few minutes, it caused slowdown at tenant and
possible rejection of data until the tenant DB scales up

Architecture of SigNoz Cloud with Kafka

How Kafka can help

● Highly available ingestion. Kafka acts as a buffer for 6hrs retention period
configured

● Kafka can handle bursty high ingestion and tenant can continue consuming at
fixed speed and has time to scale up if needed

● Additional processing can be done at Kafka.
e.g We can use traceID as partition key to send all spans of a trace to a
partition

● This is typically a challenge otherwise as all spans need to arrive at the same
otel-collector for the tail-sampling decision

Current Kafka Setup

● 6 hrs retention period

● Replication factor 3

● 10 MB max message size

Records Produced

Records Consumed

Monitoring Consumer lag is important

Scaling based on Consumer lag

● We get alerted if consumer lag of any partition increases to a threshold

● This metric can be used to scale up your consumer group (defined at the
tenant otel-collector) and tenant.

e.g add more partitions for the topic so that more tenant otel-collectors can be
deployed as number of partitions is the limit of parallelism in kafka

Monitoring Producer - Consumer Latency

Kafka based architecture is working well so far…

● Very fast at ingestion. Data is retained for 6 hrs only

● We even get a compression factor of 10 to 15 as the data is batched before
ingesting to Fafka. The otel-collector agent at a user’s infra also sends a
batched data to the gateway otel-collectors

● Able to handle spikes in customer ingestion

Potential Improvements

● Automatic increase of partitions based on scale of ingestion at a topic

● A partition can get stuck if a tenant otel-collector throws a permanent failure.
Solution is to drop after a few retries. Or send the message to a DLQ (Dead
Letter Queue) and move to the next message

● Making the tenant otel-collector (kafka receiver -> processors -> exporter) a
synchronous module so that consumer commits an offset only after the
message is successfully written to the DB.

● Make the complete write path an exactly-once delivery model

Get involved in a growing community

SigNoz repo - https://github.com/SigNoz/signoz

Slack Community - signoz.io/slack

Create an issue - https://github.com/SigNoz/signoz/issues

https://github.com/SigNoz/signoz
https://signoz.io/slack
https://github.com/SigNoz/signoz/issues

Thank You

@pranay01

pranay@signoz.io

Let’s chat more in our slack community
signoz.io/slack

https://twitter.com/ankitnayan

