

Forging a *Secure* and *Observable* DevOps Frontier with AI/ML

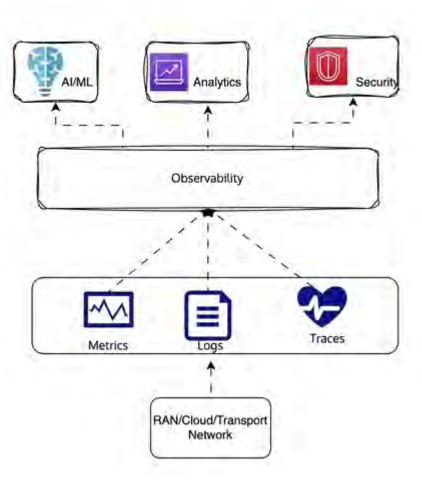
PRATIK THANTHARATE

Conf42 Observability

June 13^{th,} 2024

The DevOps Evolution

From Silos to Synergy


- Breaking down Dev & Ops barriers
- Faster, more frequent deployments

The Complexity Challenge

- Microservices
- Serverless functions
- Containers

AI-Driven Observability

AI/ML Powers

- Advanced pattern recognition
- Predictive analytics & Correlation discovery

Drowning in DevOps Data

- Logs, Metrics, Traces
- Multiple services & components

Intelligent Anomaly Detection

- Beyond rule-based methods
- Learning "normal" behavior
- Spotting multi-dimensional anomalies

Automated Root Cause Analysis

- Causal inference techniques
- Graph analysis
- Example: DB slowdown \rightarrow Network misconfiguration

Source: LinkedIn

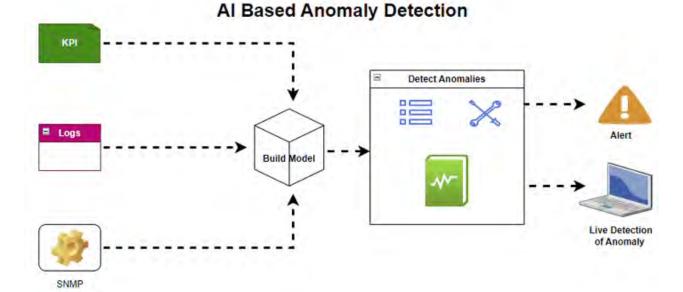
CONF42 OBSERVABILITY 2024 . JUNE 13 . ONLINE

Security Enhanced by ML – DevOps Speed vs. Safety

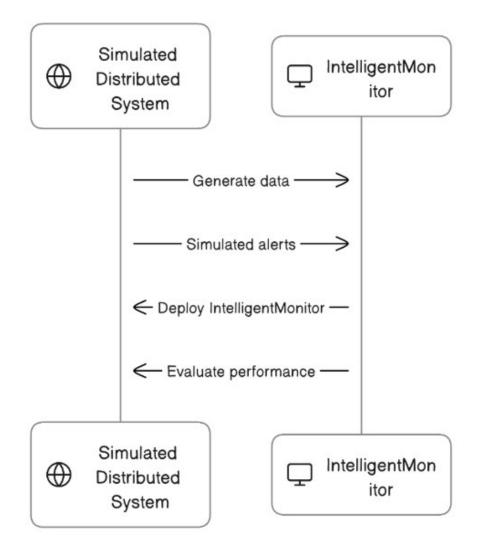
ML as a Security Multiplier

- Adapts to evolving threats
- Works at a DevOps pace

Advanced Threat Detection


- Analyzes network, logs, user behavior
- Spots subtle attack patterns
- Real-time adaptation

Smart Vulnerability Management

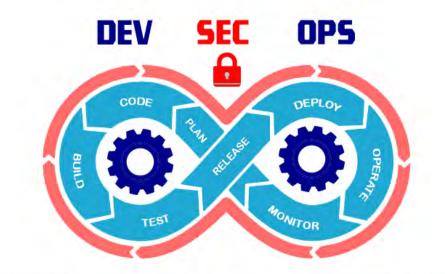

- Continuous infrastructure scanning
- Predictive attack surface analysis
- Risk-based prioritization

AI-Driven Threat Modeling

- Automates architecture mapping
- Identifies data flows & attack vectors

INTELLIGENTMONITOR

GENETICSECOPS


Algorithm 1: Genetic Algorithm for Feature Selection
Input : Feature matrix X, Labels y, Population size,
Number of generations, Mutation rate
Output: Best chromosome (selected features), Best
fitness (accuracy)
1 Initialize population randomly with binary
chromosomes;
2 Initialize best fitness and best chromosome variables;
3 for generation in range(num_generations) do
4 Evaluate fitness of each chromosome using
evaluate_fitness();
5 Select fittest chromosomes for the next generation;
6 while new population is not full do
 Choose two parent chromosomes;
8 Perform crossover operation to create two
offspring;
 Apply mutation on offspring chromosomes;
10 Add offspring to the new population;
11 end
12 Update population with the new population;
13 end
14 Best chromosome = chromosome with the highest
fitness;
15 Best fitness = highest fitness;
16 return Best chromosome, Best fitness

Al in DevSecOps Lifecycle

Observability

Trace

Runbooks

Continuous Delivery

Performance

→ Validate

Smoke

Deploy

Package

Demos

Stakeholders

Deliver

Notes

Retropective

Continuous Integration

Build

coverage

Unit Test

Requirement Analysis

Priority *

Feature Flag

Depedencies

Size

Timelin

Reg

Standard

Code

Libraries

'Shift-Left' Security

- ML code analysis during writing
- Predicts vulnerabilities
- Suggests safer patterns

- Simulates attacks on IaC templates
- Catches misconfigurations early

Monitor

DevSecOps Best Practices

Collaboratively shaping a secure digital future!