
Debugging cluster issues as
on-call SRE

- Pravar Agrawal

Agenda

● Introduction to Reliability Engineering

● Understanding role of an on-call engineer

● Identifying some commonly occurring cluster-level issues

● Approach to debugging

● Automation to the rescue

● What to do if you are a beginner

whoami

● Senior Engineer @IBM (IKS)

● Co-host for Bangalore SRE Meetup Group - https://meetup.com/sre-bangalore/

● Writes @ pravarag dot com

@realpravarag @pravarag on K8s

@pravarag

Introduction to SRE

● An approach to IT operations using different tools to solve problems,
manage systems and automate operations tasks.

● Valuable practice for creating scalable and reliable systems
● SRE practitioners ensure balance between releasing new features and

reliability for users.
● Being on-call means, you are available for a set period of time and

ready to respond to production incidents during that time with
urgency.

Understanding on-call process

● Different companies may have their own implementations of on-call

process

● Main aim is to support the production 24x7 by incident management

following few rules:

○ Acknowledge and verify the alert

○ Analyze the impact

○ Communicate

○ Corrective Action or Fix

● Famous tools for incident management: PagerDuty, Jira, OpsGenie,

ServiceNow etc.

Source: squadcast-on-call-rotation

https://www.squadcast.com/sre-best-practices/on-call-rotation

Some common cluster issues

● An environment comprising of a single or multiple Kubernetes clusters in production

● Issues related to services running on node. Is it possible to manually ssh over those to

check?

● Multiple pods stuck in Pending or Terminating state.

● API endpoints down or not reachable

● 1 or 2 Etcd pods not available out of HA

● Issuing reloads of worker nodes

● Disk reaching capacity for a worker node

● Health checks failure

Approach to Debugging

● There are no Golden rules, but there are right ways to do it.

● Analyze the error message received - lower the blast radius, better it

is.

● Utilizing monitoring tools like Prometheus, LogDNA to look at the

last recorded state of application.

● If it’s K8s related, get access to the cluster and try to list out status

of master components, etcd and other core components.

● If it’s a widely impacting issue, try to isolate the service by restricting

it’s usage throughout.

Automation to the rescue?

● Reducing the time to respond and get infrastructure statistics at

the earliest.

● Automate to:

○ Get cluster statistics

○ Run real time commands, handle node reboots or restart

core services

○ Query historical data to find patterns in occurrence of

different issues.

○ Schedule clean-up jobs

Shades of automation

● Meaningful and well documented Runbooks for on-call SREs

● Chatops

● Bots - Slack, Teams, mattermost

○ https://botkube.io/

● Purposely curated scripts running as K8s resources

● AI based analysers to gather much detailed info from the cluster

● Integrations with existing monitoring tools to extend their capabilities

● Curated dashboards to get a better view of what’s happening inside the infra

https://botkube.io/

Advice for beginners

● More the exposure, more seasoned you’ll get in handling different situations

● Broader understanding of the entire architecture and infrastructure involved.

● Keep runbooks handy to deal with different issues, errors, warnings etc.

● Analyze historical or recent issues and alerts that have caused different outages. This could

prove as a great learning.

● If it auto-resolves, doesn’t always mean there’s nothing wrong.

Thank You!

