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What | will be covering

e Coroutines as generalised subroutines

e Howitstarted

e Classifying coroutines - Building up to Full Coroutines
e CoroutinesinGo

e Goruntime changes to support them natively



Brushing up on some Basics
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What are Subroutines?
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Eager and Closed

e Eager: Expressionis evaluated as soon as it is encountered



Eager and Closed

e Eager: Expressionis evaluated as soon as it is encountered

e Closed: Only returns after it has evaluated the expression



Coroutines as generalised Subroutines




Suspend Run

Terminate Yield

Suspend Yield



Suspend Run

Terminate Yield

Suspend Yield




Subroutine




Coroutine

Subroutine




output

Coroutine

Subroutine




o8

OO

tput
read
B vin s o

tput (EOF)
e o heicacis s ) O

0

@ @ -
- J
oroutine

Subro



Coroutines are like functions that return multiple times and keep their state



Coroutines are like functions that return multiple times and keep their state
(which would include the values of local variables plus the command pointer)



Coroutines are like functions that return multiple times and keep their state
(which would include the values of local variables plus the command pointer) so
they can resume from where they yielded




Let’s look at an example



Comparing Binary Trees!



function visit(t)
if £t ~= nil then -- note: ~=
visit(t.left)
coroutine.yield(t.value)
visit(t.right)

end
end

function cmp(tl, t2)
col = coroutine.create(visit)
co2 coroutine.create(visit)
while true
do

okl, vl = coroutine.resume(col, tl)
ok2, v2 = coroutine.resume(co2, t2)

if okl ~= ok2 or vl ~= v2 then
return false

end

if not okl and not ok2 then
return true

end




function visit(t)
if £t ~= nil then -- note: ~=
visit(t.left)

coroutine.yield(t.value)
visit(t.right)
end
end

function cmp(tl, t2)

col = coroutine.create(visit)

co2 = coroutine.create(visit)

while true

do
okl, vl = coroutine.resume(col, tl)
ok2, v2 = coroutine.resume(co2, t2)
if okl ~= ok2 or vl ~= v2 then

return false

end

if not okl and not ok2 then
return true

end
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function visit(t) \\\//
if t ~= nil then -- note: ~= /////// \\\\\\\
visit(t.left) o y ST
coroutine.yield(t.value) \\i/) K\i//

visit(t.right) \ / \\\
end \ ///

end \ s i \
€ e 5> G
function cmp(t1l, t2) \\_// \\f

col = coroutine.create(visit)
co2 = coroutine.create(visit)

while true
do P
okl, vl = coroutine.resume(col, tl) K\:J/)

ok2, v2 = coroutine.resume(co2, t2) Sy
if okl ~= ok2 or vl ~= v2 then A
return false //’\\\ \\\7/’i:>
end 25 3
if not okl and not ok2 then \\ 4 \\,
\\

return true \\
end \




Let’s go back in time
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It's 1958 ...

You want to compile your COBOL program in the modern nine-path COBOL
compiler

You take your main program punched-card, pass it to the Basic Symbol Reducer
which will eat the punched card, and it will spew the tokens onto the tape

It then goes back to the main routine, which calls the Name Reducer (Name
Lookup today) which puts its output in the next tape
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It's 1958 ...

e And this keeps going till you have the result of the execution and a bunch of
extra tapes that you don’t need anymore.



It's 1958 ...

e Conway thought there had to be a better way to pass a token from a lexer to the
parser without all this expensive piece of machinery
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It's 1958 ...

e Subroutines were just a special case of more generalised coroutines, that didn’t
need to write on tape

(ie, they didn't need to “return”)

e Instead pass the information more directly, bypassing this “machinery”
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It's 1958 ...

e This way, raising the level of abstraction, actually led to a less costly control
structure, leading to the one-pass COBOL compiler.



It's 1958 ...

“Negative Cost Abstraction”



Side note - The paper that coined the term “Coroutines”

i=

Design of a Separable

Transition-Diagram Compiler*

MEeLvin E. Conway
Directorate of Computers, USAF
L. G. Hanscom Field, Bedford, Mass.

A COBOL compiler design is presented which is compact
enough to permit rapid, one-pass compilation of a large sub-
set of COBOL on a moderately large computer. Versions of
the same compiler for smaller machines require only two work-
ing tapes plus a compiler tape. The methods given are largely
applicable to the construction of ALGOL compilers.

Introduction

This paper is written in rebuttal of three propositions
widely held among compiler writers, to wit: (1) syntax-
directed compilers [1] suffer practical disadvantages over
other types of compilers, chiefly in speed; (2) compilers
should be written with compilers; (3) CosoL [2] compilers
must be complicated. The form of the rebuttal is to de-
seribe a high-speed, one-pass, syntax-directed CoBoL com-
piler which can be built by two people with an assembler

to make this design (in which all tables are accessed while
stored in memory) practical on contemporary computers.
None of these techniques is limited in application to CoBoL
compilers. The following specific techniques are discussed:
the coroutine method of separating programs, transition
diagrams in syntactical analysis, data name qualification
analysis, and instruction generation for conditional state-
ments.

The algorithms described were verified on the 5000-word
Burroughs 220 at the Case Institute of Technology Com-
puting Center. A two-pass configuration was planned for
that machine, and first-pass code was checked out through
the syntactical analysis. At the time the project was dis-
continued a complete CoBoL syntax checker was operating
at 140 fully-punched source cards per minute. (The Case
220 had a typical single-address instruction time of 100
microseconds.) Remarks presented later suggest that a
complete one-pass version of the compiler, which would
be feasible on a 10,000-word machine, would run at well
over 100 source cards per minute.

Coroutines and Separable Programs

That property of the design which makes it amenable to
many segment configurations is its separability. A program
organization is separable if it is broken up into processing
modules which communicate with each other according to

tha fallaurine vactvintinane: (1) tha anlvy aammiminatinn



So, where are Coroutines now?




e Considering all we've talked about so far, coroutines should have been a
common pattern that is provided by most languages.
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Considering all we've talked about so far, coroutines should have been a
common pattern that is provided by most languages.

But with rare exceptions such as Simula, few languages do, and those that do,
generally provide limited variants of coroutines, (we discuss this a little later)



Problems with Coroutines

e Alack of auniform view of this concept



Problems with Coroutines

e Alack of auniform view of this concept
e No precise definitions for it
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e Andwithit, block scoped variables



Problems with Coroutines

Another reason why coroutines are not provided as a facility in most
mainstream languages was the advent of Algol-60

And with it, block scoped variables, you no longer had parameters and return
values stored as global memory, but rather relative to a stack pointer
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Coroutines using side stacks
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Coroutines using side stacks
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Problems with Coroutines

e This almost mimics heavy multithreading and increases memory footprint,
rather than being a cheap abstraction like a function that a coroutine is meant
to be.



Quickly, let’s look at the fundamental characteristics of a
Coroutine
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mechanism, summarizes -
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Characteristics

Marlin’s doctoral thesis, widely acknowledged as a reference for this
mechanism, summarizes -

“The values of data local to a coroutine persist between successive calls”
“The execution of a coroutine is suspended as control leaves it, only to carry on
where it left off when control re-enters the coroutine at some later stage.”



Now that we have the basics and the history out of the
way



... and hopefully, have made a case for its usefulness



let’s build up to what a coroutine can look like in Go



Classifying Coroutines

| promise this is relevant, please bear with me




Classifying Coroutines

e By doing this we will see what we mean by a “Full Coroutine”



Classifying Coroutines

e By doing this we will see what we mean by a “Full Coroutine”
e Andhow some languages like Python and Kotlin don’t actually provide this



Control Transfer Mechanism - Asymmetric, Symmetric

e Symmetric coroutines provide a single control-transfer operation that allows
coroutines to explicitly pass control among themselves.

SYMMETRIC ASYMMETRIC



Control Transfer Mechanism - Asymmetric, Symmetric

e Symmetric coroutines provide a single control-transfer operation that allows
coroutines to explicitly pass control among themselves.
e Asymmetric coroutine mechanisms provide two control-transfer operations:

SYMMETRIC ASYMMETRIC



Control Transfer Mechanism - Asymmetric, Symmetric

e One forinvoking a coroutine and one for suspending it, the latter returning
control to the coroutine invoker.

SYMMETRIC ASYMMETRIC



Control Transfer Mechanism - Asymmetric, Symmetric

e Coroutine mechanisms that support concurrent programming usually provide
symmetric coroutines

SYMMETRIC ASYMMETRIC



Control Transfer Mechanism - Asymmetric, Symmetric

Coroutine mechanisms that support concurrent programming usually provide

symmetric coroutines
On the other hand, coroutine mechanisms intended for constructs that produce

sequences of values typically provide asymmetric coroutines

SYMMETRIC ASYMMETRIC



Control Transfer Mechanism - Asymmetric, Symmetric

e Butsymmetric coroutines can be implemented using asymmetric coroutines
that are easier to write and maintain.

SYMMETRIC ASYMMETRIC



First-Class versus Constrained Coroutines

e A coroutine mechanism provided as first-class objects that are fully
programmable has a huge influence on its expressive power.



First-Class versus Constrained Coroutines

A coroutine mechanism provided as first-class objects that are fully
programmable has a huge influence on its expressive power.

Coroutine objects that are constrained within language bounds cannot be
directly manipulated by the programmer.



First-Class versus Constrained Coroutines

Appear in an expression
Be assigned to a variable
Be used as an argument

Be returned by a function call



Stackful coroutines allow coroutines to suspend their execution from within

nested functions.
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Finally, Stackfulness

e Stackless coroutines like in Python and Kotlin are not Full Coroutines.



With this, we show that a Full Coroutine would have to be
“Stackful” and be provided as “First Class objects”



Full Coroutines

e Full Coroutines can be used to implement Generators, lterators, Goal Oriented
Programming and Cooperative Multitasking



Full Coroutines

Full Coroutines can be used to implement Generators, Iterators, Goal Oriented
Programming and Cooperative Multitasking

And just providing asymmetric coroutine mechanisms is sufficient as they can
implement symmetric coroutines and are much easier to implement.



Cooperative Multitasking - a small caveat



Cooperative Multitasking

e |nacooperative multitasking environment, the interleaving of concurrent tasks
is deterministic.

Time

Corel

Task 1 - Task 2 | Task 1 | Task 2 || Task2 |- Task 1 >

Core 2 Task 2 |- Task 1 —{ Task 2 Task 1 — Task 2 |- Task 1 .




Cooperative Multitasking

In a cooperative multitasking environment, the interleaving of concurrent tasks

is deterministic.
There is a fairness problem that arises when concurrent tasks execute

time-consuming operations - non-preemption



Cooperative Multitasking

e Inuser-level multitasking, coroutines are part of the same program and
collaborate to achieve a common goal



Cooperative Multitasking

In user-level multitasking, coroutines are part of the same program and

collaborate to achieve a common goal
Since fairness problems are restricted to the collaborative environment, they

are more easily identified and reproduced, and not difficult to implement.



Why Coroutines in Go?



Coroutines in Go

e Coroutines are not directly served by existing Go concurrency libraries



Coroutines in Go

e Coroutines are not directly served by existing Go concurrency libraries
e Asanexample, In Rob Pike’s talk “Lexical Scanning in Go”, They ran in separate
goroutines connected by a channel.

Concurrency is a design approach

Concurrency is not about parallelism.
(Although it can enable parallelism).

Concurrency is a way to design a program by decomposing it into
independently executing pieces.

The result can be clean, efficient, and very adaptable.




Coroutines in Go

e Full goroutines proved to be a bit too much. The parallelism provided by the
goroutines caused races.



Coroutines in Go

Full goroutines proved to be a bit too much. The parallelism provided by the

goroutines caused races.
Proper coroutines would have avoided the races and been more efficient than

goroutines because of concurrency constructs.



Difference between Coroutines, Threads and Generators



Difference between Coroutines, Threads and Generators

to get it out of the way



Coroutines, Threads and Generators

e Coroutines provide concurrency without parallelism: when one coroutine is
running, the others are not.



Coroutines, Threads and Generators

e Threads provide more power than coroutines, but with more cost.

User level
thread

User space
Kernel space

Cé) Kernel level
thread

Process




Coroutines, Threads and Generators

e Threads provide more power than coroutines, but with more cost.
e With Parallelism, the cost is the overhead of scheduling, including more
expensive context switches.



Coroutines, Threads and Generators

Threads provide more power than coroutines, but with more cost.

With Parallelism, the cost is the overhead of scheduling, including more
expensive context switches.

The need to add preemption for this.



Coroutines, Threads and Generators

e Goroutines are cheap threads: a goroutine switch is closer to a few hundred
nanoseconds.
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Coroutines, Threads and Generators

e Generators (like in python) provide less power than coroutines - Stackless.

In [93]: 1 # Python Generators
def Gen(n):
i=1
4 yield (n+i)*2
5 i+=1
6 yield (n+i)*3

w N

In [94]: I for value in Gen(3):
2 print(value)

8
15



Let’s build an API for Coroutines in Go by using definitions
available today



Let’s build an API for Coroutines in Go by using definitions
available today

(This part of the talk is borrowed from Russ’ Research Proposal for
implementing Coroutines)



API for Coroutines

e Itisvery neatthat we can do this using existing Go definitions, Goroutines and
Channels because of how channels work with blocking Goroutines
(Goroutine-safe), and Go's support for function values



Suspend Run

Terminate Yield

Suspend Yield



We start with a simple implementation of the package
coro.
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Wait to receive from Cout
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API for Coroutines

This will define a function New that takes a function as an argument and one

result, it allocates channels, creates a goroutine to run f, and returns the
resume function.

package coro

func New[In, Out any](f func(In) Out) (resume func(In) Out) {
:= make(chan In)
cout := make(chan Out)
resume = func(in In) Out {

cin <- in

return <-cout
}
go func() { cout <- f(<-cin) }()
return resume
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result, it allocates channels, creates a goroutine to run f, and returns the
resume function.

package coro

func New[In, Out any](f func(In) Out) (resume func(In) Out) {
:= make(chan In)
cout := make(chan Out)
resume = func(in In) Out {

cin <- in

return <-cout
}
go func() { cout <- f(<-cin) }()
return resume




API for Coroutines

This will define a function New that takes a function as an argument and one

result, it allocates channels, creates a goroutine to run f, and returns the
resume function.

The new goroutine blocks on <-cin - No Parallelism



API for Coroutines

This will define a function New that takes a function as an argument and one

result, it allocates channels, creates a goroutine to run f, and returns the
resume function.

The new goroutine blocks on <-cin - No Parallelism

Let’s add the definition for “yield” to suspend a function and return its value to
the coroutine that “resumed” it.



Write into Cin

Wait to receive from Cout

Caller

Yield

Suspend Yield

Callee

Wait to receive from Cin

Write to Cout



API for Coroutines

func New[In, Out any](f func(in In, yield func(Out) In) Out) (resume func(In) Out) {

:= make(chan In)
cout := make(chan Out)
resume = func(in In) Out {
cin <- in
return <-cout
}
yield := func(out Out) In {
cout <- out
return <-cin
}
go func() { cout <- f(<-cin, yield) }()
return resume




API for Coroutines

e Note: “This is just an addition of a send-receive pair and there is still no
parallelism”



Let’s pause for a bit, are these actually Coroutines?
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Are these Coroutines?

Yes and no
They are full goroutines, and they can do everything an ordinary goroutine can
coro.New creates goroutines with access to “resume” and “yield” operations.

Unlike with the ‘go’ statement, we are adding new concurrency to the program
without parallelism.



Are these Coroutines?

e ‘“If you have just one main goroutine and run 10 go statements, then all 11
goroutines can be running at once”.



Are these Coroutines?

e “But if you have one main goroutine and run 10 coro.New calls, there are now
11 control flows but the parallelism of the program is what it was before”:



Are these Coroutines?

e “But if you have one main goroutine and run 10 coro.New calls, there are now
11 control flows but the parallelism of the program is what it was before”: only
one.



Are these Coroutines?

e “go” creates anew concurrent, parallel control flow, while coro.New creates a
new concurrent, non-parallel control flow”



Back to implementing our coro API - Improvements
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Is coroutine Running?

Wait to receive from Cout

Caller

Resume

Terminate

Callee

Yield

Running = False

Function terminates



API for Coroutines

e Allow resume to be called after the function is done: right now it will deadlock.

running := true
resume = func(in In) (out Out, ok bool) {
if !running {
return
}
cin <- in
out = <-cout
return out, running

}

yield := func(out Out) In {
cout <- out
return <-cin

}

go func() {
out := f(<-cin, yield)
running = false
cout <- out

30




API for Coroutines

e Pass panics from a coroutine back to its caller



API for Coroutines

e Pass panics from a coroutine back to its caller
e |f apanicoccursin acoroutine context, we have the caller blocked waiting for
news.



Write into Cin

Wait to receive from Cout

Resume

Caller

/—\

Callee

PANIC!



Write into Cin

Wait to receive from Cout

Receive Panic From callee

Resume

Caller

/\

Propagate Panic

Callee

PANIC!

Write Panic into Cout



resume = func(in In) (out Out, ok bool) {
if !running {
return

1
i

cin) <= "in

m := <-cout

if m.panic != nil {
panic(m.panic)

}

return m.val, running

}
yield := func(out Out) In {

cout <- msg[out]{val: out}

return <-cin
}
go func() {
defer func() {
if running {
running = false
cout <- msg[Out]{panic: recover()}

}
140
out := f(<-cin, yield)
running = false
cout <- msg[out]{val: out}




API for Coroutines

e We need some way to signal to the coroutine that it’s no longer needed.
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e We need some way to signal to the coroutine that it’s no longer needed.
e Perhaps because the caller is panicking, or because the caller is simply
returning.



API for Coroutines

We need some way to signal to the coroutine that it’s no longer needed,

Perhaps because the caller is panicking, or because the caller is simply
returning.

To do that, we can change coro.New to return a cancel func as well



Write into Cin <- Cancel
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Wait to receive from Cout

Receive Successful Cancel?

Caller

Callee

Write into Cout <- Cancelled



API for Coroutines

cancel = func() {
e := fmt.Errorf("%w", ErrCanceled) // unique wrapper
cin <- msg[In]{panic: e}
m := <-cout
if m.panic != nil && m.panic != e {
panic(m.panic)

}

} own

yield := func(out Out) In {
cout <- msg[Out]{val: out}
m := <-cin
if m.panic != nil {
panic(m.panic)

}

return m.val




Runtime Changes?




Runtime Changes

e While we have a definition of coroutines that can be implemented using pure
Go,



Runtime Changes

e While we have a definition of coroutines that can be implemented using pure
Go,
e Russ builds on the use of an optimized runtime implementation



Runtime Changes

e Some perf data he collected
e “Onmy 2019 MacBook Pro, passing values back and forth using the
channel-based coro.New in this post requires approximately 190ns per switch”



Runtime Changes

e He changes the compiler such that it can mark send-receive pairs and leave
hints for the runtime to fuse them into a single operation.
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the other coroutine.



Runtime Changes

He changes the compiler such that it can mark send-receive pairs and leave
hints for the runtime to fuse them into a single operation.
That would let the channel runtime bypass the scheduler and jump directly to

the other coroutine.
This implementation required about 118ns per switch, 38% faster.
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e Another change he talks about is adding a direct coroutine switch to the
runtime, avoiding channels entirely



Runtime Changes

e Another change he talks about is adding a direct coroutine switch to the
runtime, avoiding channels entirely
e That implementation took 20ns per switch.



Runtime Changes

Another change he talks about is adding a direct coroutine switch to the
runtime, avoiding channels entirely

That implementation took 20ns per switch.

This is about 10X faster than the original channel implementation.



Conclusions
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We covered quite a bit, thanks for making it here!
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e We were able to show that having a Full Coroutine facility in Go makes it even
more powerful for implementing very robust and generalised concurrency
patterns.
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e We showed what Full Coroutines are, as a function of the different
classifications of it
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Conclusions

Why we need to have Coroutines in Go, how they differ from Goroutines and
how they would differ from existing implementations in some other languages.
We then implemented a coroutine APl using existing Go definitions, and build
on it to make it robust.

We showed what runtime changes can be made to make the implementation
even more efficient.
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