
Coroutines and Go
Raghav Roy

whoami

What I will be covering

● Coroutines as generalised subroutines

What I will be covering

● Coroutines as generalised subroutines

● How it started

What I will be covering

● Coroutines as generalised subroutines

● How it started

● Classifying coroutines

What I will be covering

● Coroutines as generalised subroutines

● How it started

● Classifying coroutines - Building up to Full Coroutines

What I will be covering

● Coroutines as generalised subroutines

● How it started

● Classifying coroutines - Building up to Full Coroutines

● Coroutines in Go

What I will be covering

● Coroutines as generalised subroutines

● How it started

● Classifying coroutines - Building up to Full Coroutines

● Coroutines in Go

● Go runtime changes to support them natively

Brushing up on some Basics

What are Subroutines?

Eager and Closed

● Eager: Expression is evaluated as soon as it is encountered

Eager and Closed

● Eager: Expression is evaluated as soon as it is encountered

● Closed: Only returns after it has evaluated the expression

Coroutines as generalised Subroutines

Coroutines are like functions that return multiple times and keep their state

Coroutines are like functions that return multiple times and keep their state

(which would include the values of local variables plus the command pointer)

Coroutines are like functions that return multiple times and keep their state

(which would include the values of local variables plus the command pointer) so

they can resume from where they yielded

Let’s look at an example

Comparing Binary Trees!

Let’s go back in time

It’s 1958 …

● You want to compile your COBOL program in the modern nine-path COBOL

compiler

It’s 1958 …

● You want to compile your COBOL program in the modern nine-path COBOL

compiler

● You take your main program punched-card, pass it to the Basic Symbol Reducer

which will eat the punched card, and it will spew the tokens onto the tape

It’s 1958 …

● You want to compile your COBOL program in the modern nine-path COBOL

compiler

● You take your main program punched-card, pass it to the Basic Symbol Reducer

which will eat the punched card, and it will spew the tokens onto the tape
● It then goes back to the main routine, which calls the Name Reducer (Name

Lookup today) which puts its output in the next tape

It’s 1958 …

● And this keeps going till you have the result of the execution and a bunch of

extra tapes that you don’t need anymore.

It’s 1958 …

● Conway thought there had to be a better way to pass a token from a lexer to the

parser without all this expensive piece of machinery

It’s 1958 …

● Subroutines were just a special case of more generalised coroutines, that didn’t

need to write on tape

It’s 1958 …

● Subroutines were just a special case of more generalised coroutines, that didn’t

need to write on tape

 (ie, they didn’t need to “return”)

It’s 1958 …

● Subroutines were just a special case of more generalised coroutines, that didn’t

need to write on tape

 (ie, they didn’t need to “return”)

● Instead pass the information more directly, bypassing this “machinery”

It’s 1958 …

● This way, raising the level of abstraction, actually led to a less costly control

structure, leading to the one-pass COBOL compiler.

It’s 1958 …

 “Negative Cost Abstraction”

Side note - The paper that coined the term “Coroutines”

So, where are Coroutines now?

● Considering all we’ve talked about so far, coroutines should have been a

common pattern that is provided by most languages.

● Considering all we’ve talked about so far, coroutines should have been a

common pattern that is provided by most languages.

● But with rare exceptions such as Simula, few languages do

● Considering all we’ve talked about so far, coroutines should have been a

common pattern that is provided by most languages.

● But with rare exceptions such as Simula, few languages do, and those that do,

generally provide limited variants of coroutines, (we discuss this a little later)

Problems with Coroutines

● A lack of a uniform view of this concept

Problems with Coroutines

● A lack of a uniform view of this concept

● No precise definitions for it

Problems with Coroutines

● Another reason why coroutines are not provided as a facility in most

mainstream languages was the advent of Algol-60

Problems with Coroutines

● Another reason why coroutines are not provided as a facility in most

mainstream languages was the advent of Algol-60
● And with it, block scoped variables

Problems with Coroutines

● Another reason why coroutines are not provided as a facility in most

mainstream languages was the advent of Algol-60
● And with it, block scoped variables, you no longer had parameters and return

values stored as global memory, but rather relative to a stack pointer

Problems with Coroutines

● This almost mimics heavy multithreading and increases memory footprint,

rather than being a cheap abstraction like a function that a coroutine is meant

to be.

Quickly, let’s look at the fundamental characteristics of a

Coroutine

Characteristics

Marlin’s doctoral thesis, widely acknowledged as a reference for this

mechanism, summarizes -

Characteristics

Marlin’s doctoral thesis, widely acknowledged as a reference for this

mechanism, summarizes -

● “The values of data local to a coroutine persist between successive calls”

Characteristics

Marlin’s doctoral thesis, widely acknowledged as a reference for this

mechanism, summarizes -

● “The values of data local to a coroutine persist between successive calls”

● “The execution of a coroutine is suspended as control leaves it, only to carry on

where it left off when control re-enters the coroutine at some later stage.”

Now that we have the basics and the history out of the

way

 … and hopefully, have made a case for its usefulness

let’s build up to what a coroutine can look like in Go

Classifying Coroutines

I promise this is relevant, please bear with me

Classifying Coroutines

● By doing this we will see what we mean by a “Full Coroutine”

Classifying Coroutines

● By doing this we will see what we mean by a “Full Coroutine”

● And how some languages like Python and Kotlin don’t actually provide this

Control Transfer Mechanism - Asymmetric, Symmetric

● Symmetric coroutines provide a single control-transfer operation that allows

coroutines to explicitly pass control among themselves.

Control Transfer Mechanism - Asymmetric, Symmetric

● Symmetric coroutines provide a single control-transfer operation that allows

coroutines to explicitly pass control among themselves.

● Asymmetric coroutine mechanisms provide two control-transfer operations:

Control Transfer Mechanism - Asymmetric, Symmetric

● One for invoking a coroutine and one for suspending it, the latter returning

control to the coroutine invoker.

Control Transfer Mechanism - Asymmetric, Symmetric

● Coroutine mechanisms that support concurrent programming usually provide

symmetric coroutines

Control Transfer Mechanism - Asymmetric, Symmetric

● Coroutine mechanisms that support concurrent programming usually provide

symmetric coroutines

● On the other hand, coroutine mechanisms intended for constructs that produce

sequences of values typically provide asymmetric coroutines

Control Transfer Mechanism - Asymmetric, Symmetric

● But symmetric coroutines can be implemented using asymmetric coroutines

that are easier to write and maintain.

First-Class versus Constrained Coroutines

● A coroutine mechanism provided as first-class objects that are fully

programmable has a huge influence on its expressive power.

First-Class versus Constrained Coroutines

● A coroutine mechanism provided as first-class objects that are fully

programmable has a huge influence on its expressive power.

● Coroutine objects that are constrained within language bounds cannot be

directly manipulated by the programmer.

First-Class versus Constrained Coroutines

Appear in an expression

Be assigned to a variable

Be used as an argument

Be returned by a function call

Finally, Stackfulness

● Stackful coroutines allow coroutines to suspend their execution from within

nested functions.

Finally, Stackfulness

● Stackless coroutines like in Python and Kotlin are not Full Coroutines.

With this, we show that a Full Coroutine would have to be

“Stackful” and be provided as “First Class objects”

Full Coroutines

● Full Coroutines can be used to implement Generators, Iterators, Goal Oriented

Programming and Cooperative Multitasking

Full Coroutines

● Full Coroutines can be used to implement Generators, Iterators, Goal Oriented

Programming and Cooperative Multitasking
● And just providing asymmetric coroutine mechanisms is sufficient as they can

implement symmetric coroutines and are much easier to implement.

Cooperative Multitasking - a small caveat

Cooperative Multitasking

● In a cooperative multitasking environment, the interleaving of concurrent tasks

is deterministic.

Cooperative Multitasking

● In a cooperative multitasking environment, the interleaving of concurrent tasks

is deterministic.

● There is a fairness problem that arises when concurrent tasks execute

time-consuming operations - non-preemption

Cooperative Multitasking

● In user-level multitasking, coroutines are part of the same program and

collaborate to achieve a common goal

Cooperative Multitasking

● In user-level multitasking, coroutines are part of the same program and

collaborate to achieve a common goal

● Since fairness problems are restricted to the collaborative environment, they

are more easily identified and reproduced, and not difficult to implement.

Why Coroutines in Go?

Coroutines in Go

● Coroutines are not directly served by existing Go concurrency libraries

Coroutines in Go

● Coroutines are not directly served by existing Go concurrency libraries

● As an example, In Rob Pike’s talk “Lexical Scanning in Go”, They ran in separate

goroutines connected by a channel.

Coroutines in Go

● Full goroutines proved to be a bit too much. The parallelism provided by the

goroutines caused races.

Coroutines in Go

● Full goroutines proved to be a bit too much. The parallelism provided by the

goroutines caused races.

● Proper coroutines would have avoided the races and been more efficient than

goroutines because of concurrency constructs.

Difference between Coroutines, Threads and Generators

Difference between Coroutines, Threads and Generators

to get it out of the way

Coroutines, Threads and Generators

● Coroutines provide concurrency without parallelism: when one coroutine is

running, the others are not.

Coroutines, Threads and Generators

● Threads provide more power than coroutines, but with more cost.

Coroutines, Threads and Generators

● Threads provide more power than coroutines, but with more cost.

● With Parallelism, the cost is the overhead of scheduling, including more

expensive context switches.

Coroutines, Threads and Generators

● Threads provide more power than coroutines, but with more cost.

● With Parallelism, the cost is the overhead of scheduling, including more

expensive context switches.

● The need to add preemption for this.

Coroutines, Threads and Generators

● Goroutines are cheap threads: a goroutine switch is closer to a few hundred

nanoseconds.

Coroutines, Threads and Generators

● Generators (like in python) provide less power than coroutines - Stackless.

Let’s build an API for Coroutines in Go by using definitions

available today

Let’s build an API for Coroutines in Go by using definitions

available today

(This part of the talk is borrowed from Russ’ Research Proposal for
implementing Coroutines)

API for Coroutines

● It is very neat that we can do this using existing Go definitions, Goroutines and
Channels because of how channels work with blocking Goroutines

(Goroutine-safe), and Go’s support for function values

We start with a simple implementation of the package

coro.

API for Coroutines

● This will define a function New that takes a function as an argument and one

result, it allocates channels, creates a goroutine to run f, and returns the

resume function.

API for Coroutines

● This will define a function New that takes a function as an argument and one

result, it allocates channels, creates a goroutine to run f, and returns the

resume function.

Blocks
on cout

Blocks
on Cin

API for Coroutines

● This will define a function New that takes a function as an argument and one

result, it allocates channels, creates a goroutine to run f, and returns the

resume function.

● The new goroutine blocks on <-cin - No Parallelism

API for Coroutines

● This will define a function New that takes a function as an argument and one

result, it allocates channels, creates a goroutine to run f, and returns the

resume function.

● The new goroutine blocks on <-cin - No Parallelism

● Let’s add the definition for “yield” to suspend a function and return its value to

the coroutine that “resumed” it.

API for Coroutines

Blocks on
Cin

API for Coroutines

● Note: “This is just an addition of a send-receive pair and there is still no

parallelism”

Let’s pause for a bit, are these actually Coroutines?

Are these Coroutines?

● Yes and no

Are these Coroutines?

● Yes and no

● They are full goroutines, and they can do everything an ordinary goroutine can

Are these Coroutines?

● Yes and no

● They are full goroutines, and they can do everything an ordinary goroutine can

● coro.New creates goroutines with access to “resume” and “yield” operations.

Are these Coroutines?

● Yes and no

● They are full goroutines, and they can do everything an ordinary goroutine can

● coro.New creates goroutines with access to “resume” and “yield” operations.

● Unlike with the ‘go’ statement, we are adding new concurrency to the program

without parallelism.

Are these Coroutines?

● “If you have just one main goroutine and run 10 go statements, then all 11

goroutines can be running at once”.

Are these Coroutines?

● “But if you have one main goroutine and run 10 coro.New calls, there are now

11 control flows but the parallelism of the program is what it was before”:

Are these Coroutines?

● “But if you have one main goroutine and run 10 coro.New calls, there are now

11 control flows but the parallelism of the program is what it was before”: only

one.

Are these Coroutines?

● “go” creates a new concurrent, parallel control flow, while coro.New creates a

new concurrent, non-parallel control flow”

Back to implementing our coro API - Improvements

API for Coroutines

● Allow resume to be called after the function is done: right now it will deadlock.

API for Coroutines

● Pass panics from a coroutine back to its caller

API for Coroutines

● Pass panics from a coroutine back to its caller

● If a panic occurs in a coroutine context, we have the caller blocked waiting for

news.

Handle
panic

Propagate panic

API for Coroutines

● We need some way to signal to the coroutine that it’s no longer needed.

API for Coroutines

● We need some way to signal to the coroutine that it’s no longer needed.

● Perhaps because the caller is panicking, or because the caller is simply

returning.

API for Coroutines

● We need some way to signal to the coroutine that it’s no longer needed,
● Perhaps because the caller is panicking, or because the caller is simply

returning.

● To do that, we can change coro.New to return a cancel func as well

API for Coroutines

Write Cancel
in to Cin

Is it my own
panic?

Panic here if received
panic from Cancel

Runtime Changes?

Runtime Changes

● While we have a definition of coroutines that can be implemented using pure

Go,

Runtime Changes

● While we have a definition of coroutines that can be implemented using pure

Go,

● Russ builds on the use of an optimized runtime implementation

Runtime Changes

● Some perf data he collected

● “On my 2019 MacBook Pro, passing values back and forth using the

channel-based coro.New in this post requires approximately 190ns per switch”

Runtime Changes

● He changes the compiler such that it can mark send-receive pairs and leave

hints for the runtime to fuse them into a single operation.

Runtime Changes

● He changes the compiler such that it can mark send-receive pairs and leave

hints for the runtime to fuse them into a single operation.

● That would let the channel runtime bypass the scheduler and jump directly to

the other coroutine.

Runtime Changes

● He changes the compiler such that it can mark send-receive pairs and leave

hints for the runtime to fuse them into a single operation.

● That would let the channel runtime bypass the scheduler and jump directly to

the other coroutine.

● This implementation required about 118ns per switch, 38% faster.

Runtime Changes

● Another change he talks about is adding a direct coroutine switch to the

runtime, avoiding channels entirely

Runtime Changes

● Another change he talks about is adding a direct coroutine switch to the

runtime, avoiding channels entirely
● That implementation took 20ns per switch.

Runtime Changes

● Another change he talks about is adding a direct coroutine switch to the

runtime, avoiding channels entirely
● That implementation took 20ns per switch.

● This is about 10X faster than the original channel implementation.

Conclusions

Conclusions

We covered quite a bit, thanks for making it here!

Conclusions

● We were able to show that having a Full Coroutine facility in Go makes it even

more powerful for implementing very robust and generalised concurrency

patterns.

Conclusions

● We were able to show that having a Full Coroutine facility in Go makes it even

more powerful for implementing very robust and generalised concurrency

patterns.

● We covered the basics of Coroutine fundamentals, its history and why it’s not
as prolific as it should be today in mainstream languages.

Conclusions

● We were able to show that having a Full Coroutine facility in Go makes it even

more powerful for implementing very robust and generalised concurrency

patterns.

● We covered the basics of Coroutine fundamentals, its history and why it’s not
as prolific as it should be today in mainstream languages.

● We showed what Full Coroutines are, as a function of the different

classifications of it

Conclusions

● Why we need to have Coroutines in Go, how they differ from Goroutines and

how they would differ from existing implementations in some other languages.

Conclusions

● Why we need to have Coroutines in Go, how they differ from Goroutines and

how they would differ from existing implementations in some other languages.

● We then implemented a coroutine API using existing Go definitions, and build

on it to make it robust.

Conclusions

● Why we need to have Coroutines in Go, how they differ from Goroutines and

how they would differ from existing implementations in some other languages.

● We then implemented a coroutine API using existing Go definitions, and build

on it to make it robust.

● We showed what runtime changes can be made to make the implementation

even more efficient.

References

● Coroutines for Go - Russ Cox

● C++ Coroutines - a negative overhead abstraction - Gor Nishanov

● Generators, Coroutines and Other Brain Unrolling Sweetness - Adi Shavit

● Happy birthday, amazing Grace Hopper

● Lexical Scanning in Go - Rob Pike

● Design of a Separable Transition-Diagram Compiler

● Revisiting Coroutines

Artworks: Renée French, Takuya Ueda, Quasylite

https://research.swtch.com/coro
https://www.youtube.com/watch?v=_fu0gx-xseY
https://www.youtube.com/watch?v=qYHDERleSL8
https://www.cockroachlabs.com/blog/grace-hopper/
https://www.youtube.com/watch?v=HxaD_trXwRE
https://www.melconway.com/Home/pdf/compiler.pdf
https://dl.acm.org/doi/pdf/10.1145/1462166.1462167

Thank you!

