Rust-Powered Data Lakes:
Building High-Performance
Infrastructure for the Modern
Lakehouse Era

A technical exploration of how Rust is revolutionizing enterprise data infrastructure with
superior performance, memory safety, and reliability for the modern data lakehouse
architecture.

By: Rahul Joshi

The Evolution of Enterprise Data Architecture

Enterprise data platforms have undergone a fundamental transformation over the past 15 years, evolving through three distinct architectural phases -
each bringing new capabilities and challenges.

Phase 1: On-Premises Hadoop Era Phase 3: Modern Lakehouse
HDFS and MapReduce dominated, with Java/JVM technologies Convergence architecture combining warehouse performance with
handling massive datasets. Limited by garbage collection overhead lake flexibility. Open formats, unified processing, and separation of
and memory management issues at scale. storage from compute. Rust emerges as critical technology.

Phase 2: Cloud Data Warehouses

Snowflake and similar platforms emerged, solving usability problems
but creating vendor lock-in and cost/performance tradeoffs.
Infrastructure became more abstracted.

Why Rust for Data Infrastructure?

Rust's Unique Value Propaosition

e N
Memory Safety without GC Fearless Concurrency
Zero-cost abstractions eliminate Type system prevents data races at
runtime overhead. No garbage compile time. Safe parallelism for
collection pauses during critical multi-core utilization.
processing.

\. J

e
Performance Control
Predictable resource usage with deterministic memory management. Low-level
control with high-level ergonomics.

-

Phase 1: Hadoop Era Limitations

™ ™
JVM Memory Overhead Garbage Collection Pauses
Hadoop clusters required significant Large-scale analytics jobs
memory overhead for JVM experienced unpredictable GC
processes, with each task requiring pauses, sometimes exceeding
its own heap. Object representation several seconds, causing
added 12-16 bytes per instance. inconsistent processing times and
resource utilization.
y, y,
~

Serialization/Deserialization Costs

Data movement between JVM processes required expensive ser/de operations.
Even with optimized formats like Avro or Kryo, this created significant CPU and
memory pressure.

These limitations made scaling difficult and expensive, with diminishing returns as data
volumes grew. Organizations often overprovisioned hardware to compensate for
inefficiencies.

Rust Alternatives to MapReduce Frameworks

Modern Rust-based alternatives offer dramatically improved performance Performance Comparison: Word Count Benchmark
and resource utilization compared to traditional JVM MapReduce
implementations.

q ! 4 s Hadoop MapReduce
e tokio-rs: Asynchronous runtime enabling high-throughput concurrent

processing

e rayon: Data-parallelism library that makes parallel processing safer b

and simpler
e Datafusion: In-memory query engine with columnar execution Rust Rayon
* Polars: Lightning-fast DataFrame library with lazy evaluation

Rust DataFusion

These frameworks eliminate GC pauses while providing more predictable
resource utilization and throughput.

Phase 2: Cloud Data Warehouse
Challenges

Cloud data warehouses like Snowflake solved many usability problems but introduced

h
"

~f1— 8 B 5 new constraints:
\\ % \‘ -4 # =
= = = = =l - N\
= = —.a Vendor Lock-in Performance/Cost Tradeoffs
L~ _

' . Proprietary formats and interfaces Pay-per-compute model incentivized
created dependency on specific optimization, but limited control over
providers. Data migration between execution. Inefficient queries could
platforms became costly and time- incur substantial costs with opaque
consuming. resource utilization.

\ J/ \

-
Limited ML Support
Traditional warehouses optimized for SQL analytics, not ML workloads. Extracting
data for ML created silos and redundant storage.

Rust-Based Query Engines and Storage Formats

Apache Arrow: Columnar Memory Standard

Rust implementation provides zero-copy access to columnar data with predictable
memory layout. Enables efficient processing across language boundaries without
serialization costs.

DataFusion: Performant SQL Engine

Arrow-native query execution with LLVM-powered expression evaluation. Provides both
SQL and DataFrame APIs with physical query optimization.

Lance & ParquetRS: Efficient Storage

Rust-native implementations of columnar storage formats delivering performance
improvements of 3-10x over Java implementations while reducing memory footprint.

Memory Usage Comparison: Rust-based query engines

typically use 30-70% less memory than JVM counterparts
when processing the same datasets.

Phase 3: The Modern Lakehouse
Architecture

The lakehouse paradigm unifies data warehouse and data lake capabilities, addressing

the limitations of both while enabling new use cases.

Open Storage Formats

%7 Delta Lake, Iceberg, and Hudi provide table formats with ACID transactions,
schema evolution, and time travel on object storage.

Unified Processing

&@ Single processing layer serves both SQL analytics and ML workloads,
eliminating redundant data copies and ETL.

Scalable Architecture

@ Separation of storage from compute allows independent scaling of resources,
with governance and metadata management.

Rust's Role in Lakehouse Infrastructure

Key Lakehouse Components Powered by Rust

Component Rust Implementation Key Benefits

Table Formats delta-rs, iceberg-rs Native ACID transaction support with minimal
overhead

Columnar Storage arrow-rs, parquet-rs, lance Zero-copy access, predictable memory usage

Query Processing DataFusion, Ballista Parallel execution with minimal resource
footprint

DataFrame Libraries Polars, Arrow-DataFusion 10-100x faster than Python pandas with lower

memory

Performance Benchmarks: Rust vs. Traditional
Technologies

Real-world performance comparisons between Rust-based data infrastructure and traditional JVM/Python alternatives:

[18)4 85% 30x 99.9%

Query Performance Memory Reduction Data Loading Reliability
Speedup for complex analytical Less memory required for Polars Faster data.loading from Parquet Reduction in out-of-memory errors
queries using DataFusion compared DataFrame operations compared to using arrow-rs compared to for long-running data processing
to Apache Spark for the same pandas when processing 100GB PyArrow for TB-scale datasets jobs compared to JVM-based

hardware configuration datasets alternatives

Practical Implementation Patterns

Integration Approaches Common Use Cases

e Microservice Components: Isolate High-throughput data ingestion
performance-critical data processing pipelines processing millions of
in Rust services with REST/gRPC events per second
interfaces

e Extension Libraries: Create native Feature computation for ML
extensions for Python/JVM with Rust training with complex
core processing transformations

* Full System Replacements: Replace

entire processing pipelines with Rust Interactive query engines requiring
alternatives for maximum benefit sub-second response times

Most organizations begin with targeted
replacements of bottleneck components Edge computing nodes with
rather than complete rewrites. resource constraints

Key Takeaways & Next Steps

@ Rust addresses critical performance limitations Ecosystem is maturing rapidly
Memory safety without GC, predictable performance, and efficient Arrow, DataFusion, Delta Lake, and Polars provide production-ready
resource utilization make Rust ideal for data infrastructure components for building high-performance data platforms today.

components with strict SLAs.

Incremental adoption is practical Future-proof your architecture
Begin with isolated components that interface with existing Rust's performance characteristics align perfectly with evolving
systems. Focus on performance bottlenecks or reliability-critical lakehouse requirements, providing a foundation that scales with
infrastructure first. your data needs.

Evaluate your current data architecture to identify components that would benefit most from Rust's performance and reliability advantages.

Thank You

