
Rust-Powered Data Lakes: 
Building High-Performance 
Infrastructure for the Modern 
Lakehouse Era
A technical exploration of how Rust is revolutionizing enterprise data infrastructure with 
superior performance, memory safety, and reliability for the modern data lakehouse 
architecture.

By: Rahul Joshi



The Evolution of Enterprise Data Architecture
Enterprise data platforms have undergone a fundamental transformation over the past 15 years, evolving through three distinct architectural phases - 
each bringing new capabilities and challenges.

1

Phase 1: On-Premises Hadoop Era
HDFS and MapReduce dominated, with Java/JVM technologies 

handling massive datasets. Limited by garbage collection overhead 
and memory management issues at scale.

2

Phase 2: Cloud Data Warehouses
Snowflake and similar platforms emerged, solving usability problems 

but creating vendor lock-in and cost/performance tradeoffs. 
Infrastructure became more abstracted.

3

Phase 3: Modern Lakehouse
Convergence architecture combining warehouse performance with 
lake flexibility. Open formats, unified processing, and separation of 

storage from compute. Rust emerges as critical technology.



Why Rust for Data Infrastructure?
Rust's Unique Value Proposition

Memory Safety without GC

Zero-cost abstractions eliminate 
runtime overhead. No garbage 
collection pauses during critical 
processing.

Fearless Concurrency

Type system prevents data races at 
compile time. Safe parallelism for 
multi-core utilization.

Performance Control

Predictable resource usage with deterministic memory management. Low-level 
control with high-level ergonomics.



Phase 1: Hadoop Era Limitations
JVM Memory Overhead
Hadoop clusters required significant 
memory overhead for JVM 
processes, with each task requiring 
its own heap. Object representation 
added 12-16 bytes per instance.

Garbage Collection Pauses
Large-scale analytics jobs 
experienced unpredictable GC 
pauses, sometimes exceeding 
several seconds, causing 
inconsistent processing times and 
resource utilization.

Serialization/Deserialization Costs
Data movement between JVM processes required expensive ser/de operations. 
Even with optimized formats like Avro or Kryo, this created significant CPU and 
memory pressure.

These limitations made scaling difficult and expensive, with diminishing returns as data 
volumes grew. Organizations often overprovisioned hardware to compensate for 
inefficiencies.



Rust Alternatives to MapReduce Frameworks
Modern Rust-based alternatives offer dramatically improved performance 
and resource utilization compared to traditional JVM MapReduce 
implementations.

tokio-rs: Asynchronous runtime enabling high-throughput concurrent 
processing

rayon: Data-parallelism library that makes parallel processing safer 
and simpler

Datafusion: In-memory query engine with columnar execution

Polars: Lightning-fast DataFrame library with lazy evaluation

These frameworks eliminate GC pauses while providing more predictable 
resource utilization and throughput.

Performance Comparison: Word Count Benchmark

Hadoop MapReduce

Apache Spark

Rust Rayon

Rust DataFusion

0 40 80 120



Phase 2: Cloud Data Warehouse 
Challenges
Cloud data warehouses like Snowflake solved many usability problems but introduced 
new constraints:

Vendor Lock-in
Proprietary formats and interfaces 
created dependency on specific 
providers. Data migration between 
platforms became costly and time-
consuming.

Performance/Cost Tradeoffs
Pay-per-compute model incentivized 
optimization, but limited control over 
execution. Inefficient queries could 
incur substantial costs with opaque 
resource utilization.

Limited ML Support
Traditional warehouses optimized for SQL analytics, not ML workloads. Extracting 
data for ML created silos and redundant storage.



Rust-Based �uery Engines and Storage Formats
Apache Arrow: Columnar Memory Standard

Rust implementation provides zero-copy access to columnar data with predictable 
memory layout. Enables efficient processing across language boundaries without 
serialization costs.

DataFusion: Performant S�L Engine

Arrow-native query execution with LLVM-powered expression evaluation. Provides both 
SQL and DataFrame APIs with physical query optimization.

Lance & ParquetRS: Efficient Storage

Rust-native implementations of columnar storage formats delivering performance 
improvements of 3-10x over Java implementations while reducing memory footprint.

Memory Usage Comparison: Rust-based query engines 
typically use 30-70% less memory than JVM counterparts 
when processing the same datasets.



Phase 3: The Modern Lakehouse 
Architecture
The lakehouse paradigm unifies data warehouse and data lake capabilities, addressing 
the limitations of both while enabling new use cases.

Open Storage Formats
Delta Lake, Iceberg, and Hudi provide table formats with ACID transactions, 
schema evolution, and time travel on object storage.

Unified Processing
Single processing layer serves both SQL analytics and ML workloads, 
eliminating redundant data copies and ETL.

Scalable Architecture
Separation of storage from compute allows independent scaling of resources, 
with governance and metadata management.



Rust's Role in Lakehouse Infrastructure
Key Lakehouse Components Powered by Rust

Component Rust Implementation Key Benefits

Table Formats delta-rs, iceberg-rs Native ACID transaction support with minimal 
overhead

Columnar Storage arrow-rs, parquet-rs, lance Zero-copy access, predictable memory usage

Query Processing DataFusion, Ballista Parallel execution with minimal resource 
footprint

DataFrame Libraries Polars, Arrow-DataFusion 10-100x faster than Python pandas with lower 
memory



Performance Benchmarks: Rust vs. Traditional 
Technologies
Real-world performance comparisons between Rust-based data infrastructure and traditional JVM/Python alternatives:

10x
�uery Performance

Speedup for complex analytical 
queries using DataFusion compared 

to Apache Spark for the same 
hardware configuration

85%
Memory Reduction

Less memory required for Polars 
DataFrame operations compared to 

pandas when processing 100GB 
datasets

30x
Data Loading

Faster data loading from Parquet 
using arrow-rs compared to 

PyArrow for TB-scale datasets

99.9%
Reliability

Reduction in out-of-memory errors 
for long-running data processing 

jobs compared to JVM-based 
alternatives



Practical Implementation Patterns
Integration Approaches

Microservice Components: Isolate 
performance-critical data processing 
in Rust services with REST/gRPC 
interfaces

Extension Libraries: Create native 
extensions for Python/JVM with Rust 
core processing

Full System Replacements: Replace 
entire processing pipelines with Rust 
alternatives for maximum benefit

Most organizations begin with targeted 
replacements of bottleneck components 
rather than complete rewrites.

Common Use Cases

High-throughput data ingestion 
pipelines processing millions of 
events per second

Feature computation for ML 
training with complex 
transformations

Interactive query engines requiring 
sub-second response times

Edge computing nodes with 
resource constraints



Key Takeaways & Next Steps
1 Rust addresses critical performance limitations

Memory safety without GC, predictable performance, and efficient 
resource utilization make Rust ideal for data infrastructure 
components with strict SLAs.

2 Ecosystem is maturing rapidly
Arrow, DataFusion, Delta Lake, and Polars provide production-ready 
components for building high-performance data platforms today.

3 Incremental adoption is practical
Begin with isolated components that interface with existing 
systems. Focus on performance bottlenecks or reliability-critical 
infrastructure first.

4 Future-proof your architecture
Rust's performance characteristics align perfectly with evolving 
lakehouse requirements, providing a foundation that scales with 
your data needs.

Evaluate your current data architecture to identify components that would benefit most from Rust's performance and reliability advantages.



Thank You


