
Building Production-Ready ML-
Based Network Routing

Lessons from Real-World Platform
Engineering Deployments
Rahul Tavva

Kairos Technologies Inc.

As traditional routing protocols struggle to meet the demands of modern distributed

applications, machine learning approaches offer a promising alternative. This presentation

shares practical insights from implementing ML-based routing in production environments,

focusing on the technical architecture, deployment patterns, and operational considerations
platform teams need to understand.

Agenda
01

Introduction to ML-Based Network
Routing

Core concepts, value proposition, and current

landscape

02

Technical Architecture &
Components

Data pipelines, model training, integration patterns

03

ML vs. Traditional Routing Protocols

Decision-making, convergence behavior, and failure

handling

04

Implementation & Deployment
Patterns

Infrastructure requirements and integration
approaches

05

Monitoring, Observability &
Operations

Performance benchmarking, incident response,
security

06

Real-World Case Studies

Deployment challenges, ROI measurements,

lessons learned

07

Practical Guidance & Next Steps

Evaluation frameworks, tooling recommendations, adoption roadmap

This session is designed for platform engineers, SREs, and infrastructure architects considering ML-based routing technologies for their production environments.

All insights are drawn from real-world implementation experiences across multiple industries.

The Evolving Network Routing Landscape

Why Traditional Routing Falls Short

Traditional routing protocols like BGP, OSPF, and EIGRP were designed decades ago for

different network conditions and traffic patterns. They face significant limitations in modern

environments:

Static Decision Models

Reliance on predefined metrics and weights that don't adapt to changing network

conditions

Limited Context Awareness

Inability to incorporate application requirements, traffic patterns, or historical

performance

Slow Convergence

Extended periods of suboptimal routing during network changes or failures

Manual Optimization

Heavy reliance on operator expertise for tuning and troubleshooting

The explosion of east-west traffic in microservices
architectures, coupled with increasing demands for low-

latency performance and reliability, creates an environment

where traditional routing protocols struggle to deliver

optimal results.

The ML-Based Routing Value Proposition

Machine learning approaches to routing offer the potential to overcome these limitations by learning from historical patterns, adapting to changing conditions,

and considering a much richer set of inputs when making routing decisions.

ML-Based Routing: Core Concepts
Unlike traditional protocols that use fixed algorithms, ML-based routing systems learn optimal paths based on dynamic network conditions and historical

performance data.

Key Differentiators

ML-based routing systems differ fundamentally from traditional protocols in how they approach the routing problem:

Predictive vs. Reactive: ML models can anticipate congestion or failures

before they impact performance

Multi-dimensional Optimization: Balance latency, bandwidth,

reliability, and cost simultaneously

Application-Aware: Consider specific application requirements when

making routing decisions

Continuous Learning: Improve over time as they observe network

behaviors and outcomes

Anomaly Detection: Identify unusual patterns that may indicate security

issues or misconfigurations

Adaptive Policies: Automatically adjust to changing network conditions

without manual intervention

These capabilities enable ML-based routing to potentially deliver significant improvements in network performance, reliability, and operational efficiency

compared to traditional approaches.

Data Collection

Continuous gathering of network telemetry,
traffic patterns, and performance metrics across

multiple dimensions

Model Training

Supervised learning using historical optimal
paths or reinforcement learning to discover

routing policies

Inference Engine

Real-time application of trained models to make

routing decisions based on current network
state

Feedback Loop

Performance monitoring to capture outcomes

and retrain models to continuously improve
decisions

Technical Architecture of ML-Based Routing Systems
Core Architectural Components

Telemetry Collection Layer

High-performance agents deployed across the network to gather real-
time metrics including:

Interface statistics (throughput, errors, drops)

Path metrics (latency, jitter, packet loss)

Traffic characteristics (protocols, applications, flow sizes)

External data (weather, events, maintenance windows)

Data Processing Pipeline

Stream processing infrastructure that:

Normalizes and correlates metrics from diverse sources

Performs feature engineering to extract relevant signals

Manages data retention policies for historical analysis

Handles missing or inconsistent telemetry data

ML Training Infrastructure

Specialized systems for model development and training:

Offline training environments for model development

Feature stores for consistent model training

Versioned model repository and experiment tracking

Validation frameworks for model performance assessment

Inference & Control Systems

Components that apply ML decisions to actual routing:

Low-latency inference engines deployed near routing decision points

Adapters to translate ML outputs to routing protocol configurations

Safety mechanisms to prevent harmful routing decisions

Fallback systems for graceful degradation during failures

ML vs. Traditional Routing: Technical Comparison

Decision-Making Process

Traditional Protocols

Fixed algorithms with

predetermined metrics

Limited input variables (hop

count, bandwidth, delay)

Deterministic outcomes

based on current state only

Manual policy configuration
for traffic engineering

ML-Based Routing

Probabilistic models trained

on historical data

Hundreds of potential input

features considered

Predictions based on

patterns and historical

outcomes

Autonomous policy

adjustment based on

feedback

Convergence Behavior

Traditional Protocols

Reactive response to

topology changes

Fixed convergence

algorithms with set timers

Potential for temporary

routing loops

Count-to-infinity problems in
distance vector protocols

ML-Based Routing

Potential to predict and pre-

compute alternate paths

Variable response based on

confidence in predictions

Can incorporate stability as

an optimization goal

May proactively reroute
before failure occurs

Failure Handling

The approaches differ significantly in how they handle network failures:

Traditional Protocols

Rely on timeout-based detection, with recovery times ranging from

seconds to minutes. Failure recovery paths are predetermined based on
topology, often resulting in suboptimal performance during degraded

conditions.

ML-Based Routing

Can leverage anomaly detection for faster failure identification. Models

can be trained specifically on failure scenarios to optimize recovery.
Capable of degraded-state optimization by considering partial failures

and performance constraints.

These fundamental differences create both opportunities and challenges for teams implementing ML-based routing in production environments.

Data Collection & Model Training Approaches
Data Requirements for Effective ML Routing

Telemetry Types

Network-level metrics: Link utilization, error rates, queue depths

Path characteristics: End-to-end latency, jitter, packet loss

Traffic profiles: Protocol distribution, flow sizes, application patterns

Infrastructure state: CPU/memory utilization, temperature, power

metrics

External factors: Time of day, scheduled maintenance, weather

events

Collection Considerations

Sampling rate: Balance between detail and system overhead

Storage requirements: Typically 30-90 days of historical data

Distribution: Edge collection with central aggregation

Consistency: Synchronized timestamps and normalization

Privacy: Data anonymization and compliance considerations

Model Training Methodologies

Supervised Learning

Training on historical "optimal" paths identified retrospectively

Common algorithms: Random forests, gradient boosting, neural networks

Challenge: Requires labeled training data that may be difficult to generate

Reinforcement Learning

Models learn routing policies through exploration and feedback

Common algorithms: Deep Q-Networks, PPO, A3C

Challenge: Requires safe exploration mechanisms in production

Hybrid Approaches

Combining traditional routing rules with ML for specific optimizations

Common approach: ML for path ranking, traditional protocols for execution

Challenge: Defining clear boundaries between systems

Feature Engineering Best Practices

Time-based features (moving averages, trends)

Topological features (centrality, redundancy)

Cross-metric correlations

Domain-specific transformations

Production Deployment Patterns
Common Integration Approaches

Shadow Mode

ML system runs alongside traditional routing but decisions are only

logged, not implemented. Allows for performance comparison without

operational risk.

Best for: Initial validation and model tuning

Duration: Typically 4-8 weeks

Advisory Mode

ML system generates routing recommendations that operators can

manually review and apply. Provides human oversight while leveraging

ML insights.

Best for: Building operational confidence

Duration: 2-6 months

Selective Automation

ML system directly controls routing for specific traffic classes or network

segments, while traditional protocols handle the rest.

Best for: Targeted optimization of critical traffic

Duration: Ongoing operational model

Full Automation

ML system makes all routing decisions with traditional protocols serving

only as fallback mechanisms during system failures.

Best for: Mature deployments with proven reliability

Duration: End-state for most deployments

Infrastructure Requirements

Compute Resources

Training infrastructure: High-performance GPU/TPU clusters for model

development (can be cloud-based)

Inference endpoints: Distributed computing resources near routing

decision points

Data processing: Stream processing infrastructure for real-time

telemetry

Storage: Time-series databases for metrics, object storage for training
data

Network Considerations

Telemetry bandwidth: Dedicated collection paths to avoid interference

Control plane capacity: Sufficient bandwidth for routing updates

Out-of-band management: Separate control paths for system recovery

Latency requirements: Decision time budgets typically 10-100ms

Successful deployments typically follow a phased approach, gradually increasing the scope and autonomy of the ML system as confidence builds. This requires

careful planning of infrastructure scaling to support growing demands.

Monitoring & Observability Challenges

Unique Monitoring Requirements

Model Performance Metrics

Prediction accuracy against ground truth

Inference latency and throughput

Feature importance drift over time

Model confidence scores per decision

Data Quality Monitoring

Telemetry completeness and consistency

Feature distribution shifts

Missing or anomalous input signals

Feedback loop integrity

System Health Indicators

End-to-end decision pipeline latency

Fallback activation frequency

Model version distribution across network

Training/serving skew metrics

Recommended Visualization Approaches

Effective dashboards for ML routing systems typically include:

Side-by-side comparisons with traditional routing decisions

Confidence interval visualization for predictions

Feature importance heat maps

Decision tree path visualization for interpretability

Network topology maps with ML-influenced routing overlays

Performance Benchmarking Methodologies

Measuring the effectiveness of ML-based routing requires specific benchmarking approaches:

A/B Testing

Directing identical traffic through ML-routed

and traditionally-routed paths to compare

performance metrics such as latency, jitter, and

packet loss.

Synthetic Workloads

Generating controlled traffic patterns to test

system response to specific conditions,

including flash crowds, microbursts, and failure

scenarios.

Historical Replay

Simulating how the ML system would have

routed traffic during past network events,

comparing against actual outcomes from

traditional routing.

Security Considerations for ML Routing
Threat Modeling for Intelligent Network Systems

Data Poisoning Attacks

Adversaries manipulating telemetry data to influence routing decisions

Mitigation: Input validation, anomaly detection on telemetry, diversity of

data sources

Model Extraction

Inferring model behavior through systematic probing to identify

exploitable patterns

Mitigation: Rate limiting probes, detecting unusual query patterns,
model obfuscation

Control Plane Hijacking

Unauthorized access to ML inference systems to manipulate routing

decisions

Mitigation: Strong authentication, encrypted control channels, behavior
monitoring

Adversarial Examples

Crafting network conditions that trick ML models into making specific

routing decisions

Mitigation: Adversarial training, ensemble models, decision bounds
checking

Essential Security Controls

Data Protection

Encrypted telemetry collection channels

Data anonymization for sensitive traffic information

Access controls on historical training data

Secure deletion policies for obsolete data

System Security

Model signing and verification

Secure model deployment pipelines

Least privilege access to ML systems

Comprehensive audit logging of all decisions

Regular penetration testing of ML infrastructure

Safety Mechanisms

Beyond security, ML routing systems require additional safety measures:

Decision Bounds

Enforcing limits on how drastically ML

systems can change routing policies,

particularly for critical traffic paths

Fallback Mechanisms

Automatic reversion to traditional routing

when ML confidence falls below thresholds

or anomalous behavior is detected

Human Circuit Breakers

Emergency override capabilities for

operators to disable ML routing during

incidents or unexpected behaviors

Operational Considerations
Incident Response Procedures

Detection

Specialized monitoring for ML-specific failure modes:

Model confidence dropping below thresholds

Unexpected routing pattern changes

Telemetry pipeline disruptions

Divergence between model versions

Containment

Targeted response options:

Gradual traffic shifting away from ML routes

Model version rollback capabilities

Feature isolation to disable problematic inputs

Partial to full fallback to traditional routing

Resolution

Recovery processes:

Progressive reintroduction of ML routing control

Post-incident model retraining

Telemetry validation and reconstruction

Confidence testing before full restoration

Common Operational Challenges

Model Drift

Performance degradation as network conditions

evolve away from training data

Solution: Continuous retraining pipelines with
automated evaluation

Explainability

Difficulty understanding why specific routing decisions

were made

Solution: Feature importance tracking, decision path

visualization tools

Team Skills

Hybrid expertise requirements spanning networking

and ML domains

Solution: Cross-training programs, specialized team

structures

Runbook Essentials

Well-documented operational procedures are critical for ML routing systems. Key runbooks should include:

Model deployment and rollback procedures with specific validation steps

Feature isolation protocols to disable problematic telemetry inputs

Traffic gradual shifting plans for safely testing new models

Emergency override procedures for complete fallback to traditional routing

Recovery checklists for systematically restoring ML routing after incidents

Data pipeline recovery procedures for handling telemetry disruptions

Real-World Case Studies: Successes and Challenges

Case Study: Financial Services Provider

Implementation Details

Multi-region deployment across 12 global data centers

Focus on latency-sensitive trading application traffic

Gradient boosting models with 5-minute retraining cycles

Integration with existing SD-WAN infrastructure

Results

68% reduction in 99th percentile latency spikes

42% decrease in path switching events during peak hours

23% improvement in overall bandwidth utilization

Estimated $3.2M annual savings from reduced circuit costs

Challenges Overcome

Initial resistance from networking team due to "black box" concerns

Regulatory compliance issues with traffic metadata collection

Integration complexity with legacy MPLS infrastructure

Case Study: E-commerce Platform

Implementation Details

Hybrid cloud environment spanning 5 public cloud regions

Reinforcement learning approach for dynamic traffic management

Specialized optimization for holiday shopping traffic patterns

Results

31% reduction in average page load times during traffic spikes

52% decrease in cross-region data transfer costs

95% reduction in manual traffic engineering interventions

Challenges Overcome

Significant false positives during initial deployment

Model performance degradation during flash sales events

Cloud provider API rate limiting affecting telemetry collection

Common Implementation Pitfalls

Insufficient Training Data
Diversity

Models trained primarily on normal

conditions perform poorly during
unexpected events. Solution: Synthetic data

generation and chaos engineering to create

diverse training scenarios.

Overoptimization For Specific
Metrics

Focusing too narrowly on single metrics like

latency can create unexpected side effects.
Solution: Multi-objective optimization with

balanced weighting across key performance

indicators.

Inadequate Telemetry
Infrastructure

Underestimating the scale of data collection

needs leads to incomplete models. Solution:
Start with overprovisioned telemetry

infrastructure and right-size after

understanding actual requirements.

ROI Assessment & Risk Management
Quantifying the Business Impact

15-40%
Bandwidth Utilization

Improvement

Typical increase in effective circuit utilization

through more intelligent traffic distribution

20-60%
Latency Reduction

Typical decrease in 95th percentile
application latency during normal operations

30-80%
MTTR Reduction

Typical reduction in mean time to recover

from network disruptions

40-70%
Operations Efficiency

Typical reduction in manual network

engineering interventions

Cost Components to Consider

Implementation costs:

Infrastructure for training and inference

Telemetry system enhancements

Integration development effort

Operational costs:

Ongoing model maintenance

Specialized skill development

Increased monitoring complexity

Risk mitigation costs:

Fallback system maintenance

Additional testing environments

Security controls specific to ML

Risk Assessment Framework

Technical Risks

Model performance degradation due to
changing network conditions

Inference system failures affecting

routing decisions

Telemetry collection disruptions

creating data gaps

Integration points with existing routing
infrastructure

Mitigation: Robust testing, staged rollout,

comprehensive fallbacks

Operational Risks

Skills gap in ML network operations

Troubleshooting complexity for hybrid

routing environments

Incident response readiness for new
failure modes

Change management processes for

model updates

Mitigation: Cross-training, specialized tooling,
enhanced runbooks

Business Risks

Extended outages due to novel failure
scenarios

Unpredictable performance affecting

critical applications

Resource contention with other ML

initiatives

Vendor lock-in with specialized ML
routing platforms

Mitigation: SLAs, phased rollout, open

standards adoption

A comprehensive ROI analysis should balance quantifiable performance improvements against implementation costs and risk factors, considering both

immediate benefits and long-term strategic advantages.

Implementation Roadmap & Best Practices
Phased Deployment Strategy

1

Phase 1: Foundation (3-6 months)

Implement comprehensive telemetry collection

infrastructure

Establish baseline performance metrics for existing

routing

Develop initial ML models in isolated lab

environment

Create monitoring dashboards for model

performance tracking

2

Phase 2: Shadow Mode (2-3 months)

Deploy ML routing system in parallel with traditional

routing

Compare recommendations against actual routing
decisions

Refine models based on observed discrepancies

Validate telemetry completeness and quality

3

Phase 3: Limited Production (3-4 months)

Apply ML routing to non-critical traffic segments

Implement canary deployment for select
applications

Develop operational runbooks and incident response

procedures

Train operations team on new tools and dashboards

4

Phase 4: Full Deployment (4-6 months)

Gradually expand ML routing to all traffic classes

Implement automated retraining and model

deployment pipelines

Optimize infrastructure based on production

requirements

Develop long-term governance and maintenance
processes

Team Structure & Skills

Recommended Team Composition

Successful ML routing implementations typically require a cross-functional team with

diverse expertise:

Network Engineering

Deep understanding of existing routing protocols

Traffic engineering experience

Network telemetry expertise

Data Science

ML model development and evaluation

Feature engineering for network data

Time-series analysis experience

Platform Engineering

Data pipeline development

ML operations infrastructure

CI/CD for model deployment

Operations

Network monitoring expertise

Incident response experience

Runbook development skills

Key Skill Development Areas

Organizations implementing ML routing should focus training and

hiring efforts on:

Network telemetry systems and protocols

ML model interpretation and debugging

Time-series analysis techniques

ML system observability practices

Network simulation and digital twin concepts

Graph-based machine learning approaches

Conclusion & Next Steps

Key Takeaways

ML routing is production-ready for specific use cases

While not a universal replacement for traditional protocols, ML-based routing has
demonstrated significant value in production environments, particularly for

performance-sensitive applications and complex multi-path networks.

Hybrid approaches offer the best near-term value

Most successful implementations combine ML-based decision-making with traditional

routing protocols as execution and fallback mechanisms, leveraging the strengths of

both approaches.

Operational considerations are as important as technical ones

Building effective operational processes, monitoring systems, and team capabilities is

equally critical to success as the underlying ML technology and network integration.

Start small, but design for scale

Phased implementations with careful validation at each stage have proven most

successful, but initial architecture should anticipate eventual network-wide deployment

requirements.

Recommended First Steps

Assess your current network telemetry capabilities and

identify gaps

1.

Identify specific use cases with clear performance
metrics for initial validation

2.

Develop a small-scale proof of concept in a lab or non-

critical environment

3.

Build cross-functional team capabilities through training

and partnerships

4.

Establish baseline metrics for evaluating ML routing

performance against current solutions

5.

The Future of Network Routing

ML-based routing represents a fundamental shift in how networks will be managed and optimized in the coming years. As these technologies mature, we can

expect:

Greater Integration

ML routing capabilities will become standard
features in commercial networking equipment

and cloud platforms

End-to-End Optimization

ML systems will coordinate across application,
network, and infrastructure layers for holistic

performance

Autonomous Operations

Networks will increasingly self-tune, self-heal,
and adapt to changing conditions with minimal

human intervention

Platform engineering teams that develop expertise in ML-based networking technologies today will be well-positioned to lead this transformation and deliver

significant value to their organizations.

