Building Next-Generation
Network Infrastructure in Rust

From Zero-Copy Packet Processing to Al-
Driven Routing at Scale

A comprehensive exploration of how Rust is revolutionizing network infrastructure
development with unparalleled performance, safety, and concurrency capabilities.

Rahul Tavva

Kairos Technologies Inc.

[ [}l 1]

W
L

| [
W
-
| K

TR




Today's Agenda

Why Rust for Network Infrastructure Real-World Case Studies

Ownership model, zero-cost abstractions, and fearless Performance improvements in financial services and
concurrency advantages manufacturing networks

Practical Implementation Techniques Security Considerations & Enterprise Adoption
Zero-copy processing, efficient serialization, and custom Type system protections and migration strategies for

allocators minimizing risk



The Challenge of Modern Network Infrastructure

Today's networking demands are pushing traditional implementations to their limits:

e Increasing throughput requirements (10Gbps - 400Gbps)
e Ultra-low latency needs for HFT and real-time applications
e Complex routing decisions requiring ML-driven intelligence
e Security vulnerabilities in legacy C/C++ code bases

e Growing technical debt in aging infrastructure

Traditional network stacks written in C/C++ struggle with these demands while introducing critical security vulnerabilities.



Why Rust is Ideal for Network Infrastructure

Ownership Model Zero-Cost Abstractions

Prevents data races and memory leaks without runtime overhead, High-level programming with assembly-like performance;
ensuring predictable performance during peak traffic abstraction without sacrificing packet processing speed
Fearless Concurrency Memory Safety

Safe parallel packet processing without complex locking Elimination of buffer overflows, use-after-free, and other
strategies or thread-safety bugs vulnerabilities that plague network infrastructure

These advantages translate directly to improved routing performance, reliability, and security in production environments.



Zero-Copy Packet Processing
with Rust

Traditional Approach

Multiple memory copies across

network stack:

1.

aop oW

NIC buffer - Kernel space
Kernel space - User space
Processing with additional copies
User space - Kernel space

Kernel space - NIC buffer

Each copy adds latency and CPU

overhead

Rust Zero-Copy
Approach

Leveraging ownership and borrowing:

Direct memory mapping with safe
abstractions

Packet references passed without
copying

Compile-time verification of
memory safety

Tokio and async-std integration for
non-blocking 1/0

Result: 40-65% reduction in
processing latency



Case Study: Financial Services
Routing

94% S2Uus 3.4X

Security Latency Reduction Throughput
Vulr.\er.abllltles RlUSEbased ML routing Increase
Eliminated systems reduced average Same hardware
Rust's memory safety transaction routing time processed 3.4x more
removed buffer overflows from 120us to 32us transactions per second
and use-after-free bugs after migration from C++
that previously required to Rust

emergency patches

"Migrating to Rust eliminated the latency spikes we experienced during market
volatility events, providing consistent performance even under extreme load." -
CTO, Major US Exchange




Al-Driven Routing in Rust

S O

Data Collection Model Training
High-performance telemetry collection from network devices using ML models trained on historical routing data to predict optimal
Rust's zero-cost abstractions paths based on traffic patterns

=5 oS

Inference Engine Path Selection
Rust-based inference with deterministic latency for real-time Intelligent path selection optimizing for latency, congestion, and
routing decisions reliability metrics

Rust's performance characteristics enable ML inference directly in the routing path without sacrificing throughput. Models can be hot-swapped
without disrupting traffic flow.



Practical Rust Techniques for Network Programming

Efficient Protocol Serialization Custom Allocators for Deterministic Latency
// Fast binary serialization with serde // Custom allocator for packet buffers
#[derive(Serialize, Deserialize)] #[global_allocator]
struct RoutingHeader { static ALLOC: NetworkAllocator = NetworkAllocator::new();
source_ip: [u8; 16],
dest_ip: [u8; 16], // Preallocated packet ring buffer
protocol: u8, struct PacketRingBuffer {
flags: u16, buffers: [MaybeUninit<[u8; MTU]>; N],
} read_idx: AtomicUsize,

write_idx: AtomicUsize,
/1 Zero-copy deserialization }
let header = RoutingHeader::deserialize(
&mut serde_json::Deserializer::from_slice(&buffer)
i

I

These techniques enable Rust network code to achieve performance comparable to hand-optimized C while maintaining memory safety
guarantees.



Security Advantages of Rust for Network Infrastructure

Buffer Overflows, Use- Logic Errors,

After-Free, Memory
Leaks

Type System Protection

Rust's type system prevents entire
classes of memory safety vulnerabilities
that commonly affect network code

Side-Channel
Attacks

Attack Vector Mitigation

Ownership model provides natural
protection against many ML-based
routing system attacks, preventing data
corruption

Unsafe Blocks
Management

Secure Unsafe Blocks

Limited unsafe code for FFI and
hardware interfaces with strict
encapsulation and thorough testing



Case Study: Manutacturing Network Resilience

Before Rust Implementation:

* Network outages caused production line halts
e Recovery times averaged 17 minutes
e Memory leaks caused gradual performance degradation

e Security patches required full system restarts

After Rust Migration:

e 99.998% network uptime achieved
e Graceful degradation instead of catastrophic failures
e Recovery times reduced to under 200ms

e Hot-patching without production impact

"Rust's error handling transformed our network infrastructure from a frequent point of failure to our most reliable system component." - VP of
Operations, Fortune 500 Manufacturer



Enterprise Adoption Strategies

Identify Critical Performance Bottlenecks

Target high-impact components where Rust's performance advantages provide immediate business value

Develop FFI Interfaces

Create clean foreign function interfaces to gradually replace C/C++ components while maintaining system functionality

Implement Parallel Systems

Run Rust implementations alongside existing systems to validate performance and correctness before full cutover

Comprehensive Testing

Leverage Rust's testing framework for extensive unit, integration, and property-based testing to ensure reliability

Phased Deployment

Roll out Rust components incrementally, starting with non-critical paths and progressing to core routing functionality



Key Takeaways

Safety Without Sacrifice

Rust eliminates memory vulnerabilities without compromising performance,
ideal for network infrastructure

Performance Breakthrough

Zero-copy processing and fearless concurrency enable dramatic throughput
and latency improvements

Al-Ready Architecture

Rust's deterministic performance supports ML inference directly in the
routing path

Next Steps

e Evaluate your current network bottlenecks and
security concerns

e Begin small-scale Rust implementations in non-
critical paths

e Develop metrics for comparing performance with
existing systems
e Train team members on Rust's unique

programming model

e Join our workshop next month on implementing
tokio-based network stacks



