Graph your "Game” with Go

“Strategic playbooks unveiled”

Why the Drawing Board is Important!

S SO
i v | AN Jees Jog - e
s =N
'f-'_:" wer o AR
oot -
B
|
|

MILLION
DOLLAR

Case 1: Player Focus

Data Insight: Player X excels in games
won by large margins but
underperforms in close games.

Strategic Question: What coaching
strategies can be implemented to
enhance Player X's performance under
high-pressure conditions?

A Graph Says A Million Words

|j Past Record k—ANALYZE—{ Coach |

name: past record

SIMULATE PRESSURE
A 4
A-Rod —TO PLAY—>»
name: A-Rod

role: shortstop

name: Coach-B
role: psychologist

Playoffs

season: away

Case 2: Team Focus

Data Insight: Our team consistently
struggles against teams with robust
defensive tactics.

Strategic Question: What offensive
adjustments can we make to improve
our competitive edge against
defensively strong teams?

A Graph Speaks A Million Words

, : / . name: Coach-B
. Pitch Count |«—SUGGEST DRILL—{ Coach | rple: tactical

name: increase initial pitch

Coun! STRATEGIZE
v
Clev_eland WESERRRT Chicago
Indians Cubs
. season:
strength: o

defence

Knowledge Graphs

Why CypherQL?

Cypher query language depicts
patterns of nodes and
relationships and filters those
patterns based on labels and
properties. Cypher’s syntax is
based on ASCII art, which is
text-based visual art for
computers. This makes the
language very visual and easy to
read because it both visually and
structurally represents the data
specified in the query.

CREATE GRAPH SocialNetwork {
(Person {name STRING, dob DATE}),
(City {name STRING}),

(Person)-[LivesIn]->(City),
(Person)-[Knows]->(Person)

}

Knows
@ LivesIn Q

https://en.wikipedia.org/wiki/ASCII_art

£= &

sports analytics app

10,000 Feet

Amazon Active
Cognito Directory

Orchestrate

AWS Glue

Neo4j

&

sports analytics console

Amazon
ElasticSearch

-

Amazon
CloudWatch

— D

IAM Roles

—,Q‘?

Amazon
CloudWatch Loas

Amazon Athena

=
T

AWS Fargate

Ground Level - Neo4j Model

// Create Teams

CREATE (cubs:Team {name: "Chicago Cubs"})

CREATE (indians:Team {name: "Cleveland Indians"})
CREATE (yankees:Team {name: "New York Yankees"})

// Create Players
CREATE (aRod:Player {name: "Alex Rodriguez", team: "Yankees"})
CREATE (kluber:Player {name: "Corey Kluber", team: "Indians"})

CREATE (griffey:Player {name: "Ken Griffey Jr", team: "Free Agent"})

// Create Games
CREATE (worldSeries2016:Game {name: "2016 World Series", type: "Playoff"})
CREATE (playoffGame:Game {name: "Playoff Game", type: "Playoff"})

// Create Relationships

CREATE (aRod)-[:PLAYED_IN {role: "batter", performanceRating: "Low"}]->(playoffGame)

CREATE (kluber)-[:PLAYED_IN {role: "pitcher", performanceRating: "High"}]->(worldSeries2016)
CREATE (griffey)-[:PLAYED_IN {role: "center_field", performanceRating: "High"}]->(playoffGame)
CREATE (cubs)-[:COMPETED_IN]—>(worldSeries2016)

CREATE (indians)-[:COMPETED_IN]->(worldSeries2016)

Ground Level Golang Awesomeness - Connect

func main() {
dbUri := "neo4dj://localhost" // scheme://host(:port) (default port is 7687)
driver, err := neod4j.NewDriverWithContext(dbUri, neo4j.BasicAuth("neo4j", "letmein!"™, ""))
if err != nil {
panic(err)
}
// Starting with 5.0, you can control the execution of most driver APIs
// To keep things simple, we create here a never—cancelling context
// Read https://pkg.go.dev/context to learn more about contexts
ctx := context.Background()
// Handle driver lifetime based on your application lifetime requirements.
// driver's lifetime is usually bound by the application lifetime, which usually implies o
// application

defer driver.Close(ctx) // Make sure to handle errors during deferred calls
item, err := insertItem(ctx, driver)
if err !'= nil {
panic(err)
I
fmt.Printf("%sv\n", item)

Ground Level - Golang Awesomeness - Insert

func insertItem(ctx context.Context, driver neo4j.DriverWithContext) (xItem, error) {
result, err := neo4j.ExecuteQuery(ctx, driver,
"CREATE (n:Item { id: $id, name: $name }) RETURN n",
map [string]lany{
idie: 1l
"name'": "Item 1",
}, neodj.EagerResultTransformer)
if err != nil {
return nil, err

}

itemNode, _, err := neo4j.GetRecordValue[neo4j.Nodel (result.Records[@], "n")
if err !'= nil {
return nil, fmt.Errorf("could not find node n")

¥
id, err := neo4j.GetProperty[int64] (itemNode, "id")
if err != nil {
return nil, err
}
name, err := neo4j.GetPropertyl[string] (itemNode, "name")
if err !'= nil {
return nil, err
}

return &Item{Id: id, Name: name}, nil

Ground Level - Go In Lacrosse

CREATE (:Player {name: 'Player A', position: 'Attack'})
CREATE (:Player {name: 'Player B', position: 'Midfield'})
CREATE (:Player {name: 'Player C', position: 'Defense'})
CREATE (:Player {name: 'Player D', position: 'Goalkeeper'})
CREATE (:Game {date: '2023-84-01', opponent: 'Team X'})

Low Submarine Shots and Rainbow Passes
MATCH (pl:Player {name: 'Player A'}), (g:Game {date: '2023-84-01'})
CREATE (pl)-[:LOW_SUBMARINE_SHOT {outcome: ‘'goal'}]l->(g)

MATCH (p2:Player {name: ‘'Player B'}), (g:Game {date: '2023-04-901"'})
CREATE (p2)-[:RAINBOW_PASS {outcome: 'complete'}]->(pl)

Faceoffs, Turnovers, and Saves
MATCH (p3:Player {name: 'Player C'}), (g:Game {date: '2023-84-01'})
CREATE (p3)-[:FACEOFF_WON]->(g)

MATCH (pl:Player {name: 'Player A'}), (g:Game {date: '2023-04-01'})
CREATE (pl)-[:TURNOVER {cause: 'interception'}]1->(g)

MATCH (p4:Player {name: ‘'Player D'}), (g:Game {date: '2023-84-901'})
CREATE (p4)-[:SAVE {shotBy: 'Opponent Player'}]1->(g)

Teaser - Cosine Similarity

// Example: Calculate similarity between two players
result, err := session.Run("MATCH (p1:Player)-[:PLAYED_AGAINST]-(p2:Player) " +
"RETURN pl.name AS playerl, p2.name AS player2, " +
"gds.alpha.similarity.pearson([pl.homeRuns, pl.battingAveragel, [p2.homeRuns, p2.battingAveragel) AS similarity", nil

if err != nil {
log.Fatal("Error querying similarity:", err

for result.Next() {
fmt.Printf("Player 1: %s, Player 2: %s, Similarity: %f\n", result.Record().GetByIndex(@), result.Record().GetByIndex(1), result.Record().GetByIndex(2))

if err := result.Err(); err != nil {
log.Fatal(err)

// Example: Aggregate team success (simplified example)

// Assuming success is measured by the sum of home runs

aggResult, err := session.Run("MATCH (p:Player)-[:PLAYS_FOR]->(t:Team) " +
"RETURN t.name AS team, sum(p.homeRuns) AS totalHomeRuns", nil)

if err != nil {
log.Fatal("Error querying team success:", err

Lot More

spearman's_rank_correlation kendall_rank_correlatior
hamming_distance dot_product
jaccard_index
pearson_correlation

euclidean._distance levenshtein_distance
mahalanobis_distance manhattan_distance

Beyond just numbers

Players by category Entry fees paid Return oninvestment Average per player

23%

0/, msm—
b Sharks: top 11 players
$135,000 profit on

$2 million entry fees

Rest of sharks
$2,400 profit on
$9,100 entry fees

80%
Big fish

$1,100 losses on
$3,600 entry fees

Minnows
$25 losses on
$49 entry fees

18.7% of total players are not shown, representing 16% of total entry fees.

McKinsey&Company | Source: Estimates from publicly available data

Links

https://github.com/neo4dj/neo4j-go-drive {{boilerplate}}

https://github.com/rangarajl/graph-and-go/blob/main/model {{model}}

https://github.com/rangarajl/graph-and-go/blob/main/similarity.go {{query}}

https://github.com/neo4j/neo4j-go-driver
https://github.com/rangarajl/graph-and-go/blob/main/model
https://github.com/rangarajl/graph-and-go/blob/main/similarity.go

iy Hay Ny N

Retrospective - Takeaways

Blueprint - Thought provoker
Indirect Emphasis on using a particular tech stack
Hopefully inspire adoption to Data, Al
Maybe Tiny Graphs - Who Knows?

