Building High-Performance
Healthcare Al Systems in Rust

A Senior Travel Safety Platform

Raphael Shobi Andhikad Thomas

Independent Researcher




The Challenge: Global Senior Travel Health

Demographic Shift

By 2030, the global population of travelers over 60 will reach 703 million people.

)
"X Wanderlust
These travelers face unique healthcare challenges: Ad Ve ntu res

Explore your next chapter,

e Multiple chronic conditions requiring monitoring
e Cross-border healthcare coordination issues
e Language barriers during medical emergencies

e Limited technological solutions designed for their needs




Why Rust for Healthcare AI?

Memory Safety Performance

Ownership model prevents data races and null pointer exceptions— Zero-cost abstractions and fine-grained control enable real-time
critical for medical systems where bugs can cost lives processing of health data even on resource-constrained devices
Concurrency Cross-platform

Thread safety guaranteed at compile time—essential for handling Single codebase deployable across cloud servers, edge devices, and

multiple patient data streams simultaneously WebAssembly for consistent behavior



©

Rust Modules
Biosensors

s
Mobile Mobile
Apps Apps

Cloud Cloud
Services Services

System Architecture Overview

Our senior travel healthcare platform integrates multiple Rust-powered components across

the entire technology stack, from embedded biosensors to cloud-based predictive analytics.

The system processes health data from 2,847 concurrent users, handling 47+ health
variables per profile with sub-millisecond latency, while maintaining GDPR compliance

across 34 countries.



High-Performance Data Processing

Leveraging Rust's Advantages

Custom serde-based serialization pipeline processes medical records 340% faster than equivalent Python implementations

Tokio async runtime enables non-blocking I/O for health data streams

Zero-copy parsing of biosensor data minimizes memory overhead

Type-safe schema evolution for medical records



Safe Concurrent Al Inference

D ), %

Thread-Safe ML Pipelines Ownership-Based Safety Lightweight Model Deployment

Using candle-rs and tch bindings for real-time Rust's ownership model eliminates entire classes of ~ ONNX runtime integration allows efficient
health risk assessment across multiple user bugs in our predictive analytics engine that deployment of pre-trained models with minimal
sessions without data races processes 150+ risk factors simultaneously resource consumption

// Thread-safe health prediction using Send + Sync traits
pub struct RiskPredictor {

model: Arc>,

thresholds: RiskThresholds,

}

impl RiskPredictor {

pub fn predict(&self, vitals: &VitalSigns) -> AlertLevel {

let tensor = self.preprocess(vitals);

let prediction = self.model.lock().unwrap().forward(tensor);
self.threshold_risk(prediction)

}

}



WebAssembly Medical Translation

Client-Side Privacy-Preserving Translation

e Rust-compiled WASM modules for medical terminology translation
across 23 languages

o Achieves 94% accuracy while maintaining privacy by keeping sensitive (o
data local B
e Wasm-bindgen implementation reduces translation latency by 60% Medical

compared to server-side processing - Translator

 Critical for emergency situations where clear communication is essential

"L{
I Monein Ansic

= WO Gktocteniop=

Our WASM-powered translation module enables seniors to communicate
medical needs even when language barriers exist, without transmitting

sensitive information to external services.



Embedded Systems Integration

no_std Rust for Biosensors
Using embedded-hal for IoT biosensor firmware with minimal footprint

e Real-time constraints guaranteed by static memory allocation
e 12 physiological parameters monitored continuously

o Predictable power consumption for extended battery life

VITALITY

Reliable Data Transmission

Custom protocol implementation ensures data integrity even in areas with poor
connectivity

e Optimized for low bandwidth and intermittent connections

e Store-and-forward mechanism with cryptographic verification

e Prioritization of critical health alerts




Blockchain Data Security

GDPR-Compliant Medical Data Storage

Using the substrate framework to implement:

Blockchain Healthcare
Decot te Data Security

Immutable audit trails of all data access

Patient-controlled consent management

Secure cross-border healthcare coordination

Automatic compliance with regulations across 34 countries
Smart Contracts in ink!

Rust-based smart contracts automate consent management and data access controls,

ensuring compliance without manual intervention.




Performance Benchmarks

340%

Faster Processing

Compared to equivalent Python
implementation for medical record

processing

450 -

300 -

150 -

Python/TensorFlow

60%

Latency Reduction

For medical translation using
WebAssembly vs. server-side

processing

B Memory Usage (MB)

94%

<1ms

Translation Accuracy Response Time

Across 23 languages for critical For risk assessment across 47+ health

medical terminology

Node.js/ONNX

@ CPuU Utilization (%)

variables per user profile

Rust/candle-rs



Case Study: Emergency Response in Remote Location

Health Alert Triggered 1

Wearable sensor detects irregular heart rhythm and elevated blood

pressure for a 72-year-old traveler in rural Portugal

2 AI Risk Assessment

Rust-powered ML model analyzes 150+ risk factors and determines

potential cardiac event with 92% confidence
Local Resources Located 3

System identifies nearest medical facilities and automatically

translates medical history into Portuguese
4 Emergency Response Coordinated

Blockchain-verified medical records shared with local hospital,

enabling immediate treatment upon arrival

"The system's ability to coordinate care across language barriers and provide my complete medical history to doctors saved critical time during my

emergency."

— Actual user, cardiac event while traveling in Portugal, April 2023



Technical Challenges & Lessons Learned

Challenges Solutions

Ecosystem maturity gaps in specialized medical libraries

Built focused, well-tested medical crates

e FFlintegration with legacy healthcare systems e Created type-safe bindings with bindgen

e Strict regulatory compliance requirements e Integrated compliance checks into Cl/CD pipeline

e Compile times during initial development e Optimized build process with sccache and module organization
e Team onboarding to Rust's ownership model o Developed targeted training program with medical examples

[ "Theinvestmentin Rust's learning curve paid off exponentially in reduced bugs and runtime issues when dealing with critical health data."



Next Steps & Future Development

Federated Learning

Privacy-preserving ML using encrypted health data

across devices without centralized storage

Open Source Components

Releasing core medical data processing libraries to

foster healthcare innovation

oll0

Extended Language Support

Expanding medical translation to 40+ languages

with specialized regional medical terminology

Edge AI Deployment

Moving more intelligence to wearable devices

to reduce connectivity requirements

Healthcare Provider Integration

Developing standardized APIs for hospitals and

clinics to interface with our platform



