Building Ultra-Low Latency oG
Systems in Rust: Memory Safety
Meets Performance

A breakthrough approach for systems programmers and network engineers building
tomorrow's critical infrastructure

Riddhi Patel

DRC System LLC

Agenda
— 00— —o0 — o0 —

The 5G Performance Challenge Rust's Unique Advantages Implementation Deep Dive
Requirements and limitations of traditional Zero-cost abstractions, memory safety, Smart Network Traffic Manager and zero-
approaches and fearless concurrency copy networking

Benchmark Results Practical Techniques

Real-world performance metrics and reliability gains Advanced patterns for systems programmers to apply today

The 5G Performance Challenge

Critical Requirements:

e Ultra-low latency (<5ms end-to-end)

Exceptional reliability (99.099%+)

e Massive concurrent connections

Efficient CPU and memory utilization

Zero tolerance for memory-related failures

However, traditional C/C++ approaches often compromise memory safety for raw
speed, creating critical vulnerabilities and significant maintenance challenges.

Why Traditional Approaches Fall Short

C/Ct+ Java/Golang
Offers high performance but introduces significant memory safety Provides memory safety but often compromises predictable
risks, leading to vulnerabilities like buffer overflows and use-after- performance due to garbage collection overhead.

1ES SIS Unpredictable latency spikes from GC cycles are a critical issue for

Manual memory management adds complexity, increasing real-time systems.

dlevelopirisht Ui erel MEienkres eosts Higher memory footprint makes them less suitable for resource-

constrained 5G environments.

Achieving both robust memory safety and consistent, predictable performance is a fundamental challenge that traditional languages struggle to
overcome in 5G system development.

Rust's Unique Advantages for 5G Systems

9,

Memory Safety Without GC

Rust's ownership model and borrow checker eliminate common
memory errors like leaks and data races at compile time, ensuring
robust memory safety without runtime overhead from a garbage
collector.

55

Fearless Concurrency

Achieve thread-safe concurrent programming by design, as Rust's type
system prevents data races. Leverage ‘async/await for efficient, non-
blocking 170 operations.

i

Z.ero-Cost Abstractions

Write high-level, expressive code that compiles to highly optimized
machine code with zero runtime overhead, rivaling the performance of
hand-tuned C.

-

Controlled ‘Unsafe’

Safely integrate with low-level system operations, hardware, or C
libraries using clearly defined ‘unsafe’ blocks. Rust ensures a strict
separation, maximizing safety even in critical sections.

Smart Network Traffic Manager
Architecture

Radio Interface Layer
il Async packet processing with lock-free queues

Zero-copy buffer management via Rust's ownership system

Traffic Classification Engine
v Type-driven packet classification

Compile-time optimized matching algorithms

Intelligent Routing Core
Qg Lock-free concurrent routing tables

Memory-safe DMA operations

Z.ero-Copy Networking with Rusts Ownership Model

Traditional Approach (C/C++) Rust's Ownership Approach

// Dangerous manual buffer management /1 Safe, efficient buffer management

void process_packet(uint8_t* data, size_t len) { fn process_packet(data: &[u8]) -> Result {
uint8_t* buffer = malloc(len); /1 Zero-copy view of data
memcpy(buffer, data, len); let packet = Packet::parse(data)?;
/1 Process buffer...
// Forgot to free? Memory leak! // Buffer automatically freed when out of scope
// Double free? Crash! Ok(packet)
free(buffer); }

}

Rust's ownership model guarantees memory safety while enabling zero-copy operations, eliminating both performance overhead and entire classes

of bugs

Performance Breakthrough: Benchmark Results

4.2ms 300% 60% 0

Iind-to-Fnd Latency Throughput Gain CPU Utilization Memory Safety Bugs
Achieved consistently below the Impressive 300% throughput gain Significant 65% CPU utilization Zero memory safety bugs
5mMs target, even under peak load. over equivalent C++ reduction, thanks to zero-cost reported in 18 months of
implementations. abstractions. production deployment.

Our Rust-based 5G implementation consistently delivers performance traditionally requiring unsafe C/C++ while ensuring complete memory safety.

Memory Bandwidth Improvements

180

120

60 -

@) I I I

C++ with Manual Copy C++ with Optimized Copy Rust Zero-Copy
Memory Transfers per Packet [§ Memory Bandwidth (Gbps)

Rust's ownership system enables safe zero-copy operations, dramatically reducing memory bandwidth requirements while maintaining safety
guarantees

Advanced Async Patterns for High-Throughput
Networking

Key Async Techniques:
async fn process_stream(
mut stream: impl Stream, e Custom futures for zero-allocation packet processing
processor: Arc, Stream combinators for efficient batching
) -> Result{

* Async trait implementations via Pin
let mut stats = Stats::default();

e Custom executors optimized for network workloads

while let Some(packet) = stream.next().await { * Lock-free concurrent data structures
// Non-blocking processing
let result = processor.process(&packet).await?;
stats.update(&result);

Ok(stats)

Rust's ‘async/await’ paradigm delivers high-performance asynchronous programming, eliminating the complexity of traditional callback-based
approaches and significantly reducing memory allocations.

Leveraging the Type System for Performance

I 2

Compile-Time Polymorphism Type-State Pattern
Utilize generics and trait bounds for zero-cost abstractions, allowing Encode object states directly into the type system, preventing
the compiler to generate specialized, optimized code for each type illegal operations at compile time and ensuring data validity:

at compile time:

/! Ensures packets are validated before processing

// Example: Generic routing function for any Packet type struct UnvalidatedPacket { /* ... */}
fn route_packet<P: Packet>(packet: &P) { struct ValidatedPacket { /* ... */ }

// Compiler generates optimized code for each concrete
packet type // Cannot process an 'UnvalidatedPacket' - compilation error!

// This avoids runtime overhead associated with dynamic fn process(packet: ValidatedPacket) -> Result<(), &'static str> {
dispatch // Guaranteed to be working with validated data
} printIn!("Processing validated packet!");

Ok(())
}

Rust's robust type system enables compile-time enforcement of critical invariants, eliminating the need for costly runtime checks and enhancing

both performance and reliability.

Memory-Safe DMA Operations: The Holy Grail

Safe Abstractions Over Unsafe Code

Rust enables building safe abstractions around inherently unsafe operations like DMA:

pub struct DmaBuffer {
ptr: NonNull,
len: usize,
// Other metadata

impl Drop for DmaBuffer {
fn drop(&mut self) {
unsafe {
// Safe deallocation guaranteed
dealloc_dma_buffer(self.ptr.as_ptr(), self.len);

Hardware access with safety guarantees: the best of both worlds

Key Takeaways: Rust for Ultra-Low Latency 5G Systems

Performance Without Ownership Model Breakthrough Practical Implementation Path
Compromlse Rust's ownership system enables safe Start with core network components, using
Rust delivers C-level performance with zero-copy networking, dramatically Rust's interoperability to gradually replace
complete memory safety, achieving sub- reducing memory bandwidth requirements critical C/C++ components without full
5ms latency with zero memory-related while preventing data races rewrites

failures

Rust isn't just suitable for systems programming—it's superior for building the ultra-reliable, high-performance infrastructure that 5G applications

demand

Thank you

