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Without Single Sign On (SSO)

Why Do We Need SSO?

e Before SSO: Users had to log in separately to
each application, leading to password fatigue,
security risks, and inefficiencies.

With SSO

e With SSO: Users authenticate once and gain
access to multiple services seamlessly. i




Core SSO Protocols
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OAuth 2.0 authorization code flow
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SAML SSO Authentication
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Designing a Seamless SSO System

I
Balancing Security, Performance, and User _l
Experience is key. ’&
L
®
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1. Security: Protect tokens, enable MFA.

2. Performance: Optimize token validation,
cache responses.

3. User Experience: Keep login flows
intuitive.




Security Challenges in SSO

e Single Point of Failure: If your Identity
Provider (IdP) is compromised, attackers
get broad access.

e Token Theft & Replay Attacks:
Attackers can steal and reuse tokens.

e Man-in-the-Middle (MITM) Attacks:
Intercepting token exchanges.




Best Practices for Secure SSO

e Use short-lived tokens & refresh tokens.

e Enforce Multi-Factor Authentication
(MFA).

e Implement token scoping (limit
permissions per token).

e Enable logging & monitoring for
anomaly detection.




Performance Optimization

e Cache authentication tokens to reduce backend load.
e Load balance identity providers to handle high traffic.
e Use async token validation to speed up processing.




UX Considerations for SSO

e Minimize login prompts.
Provide branded login
pages.

e Ensure session
persistence for better
experience.




Integrating with Legacy Systems

e Use SSO gateways to wrap legacy
apps.

e Gradually replace outdated
authentication mechanisms.

e Test compatibility before full rollout.
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Future of SSO & Authentication

e Zero Trust authentication models.
Al-powered anomaly detection.
Decentralized identity -
(Blockchain-based authentication). b‘“ /
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e SSO improves security & UX but must be carefully

designed.
e Choose the right protocol (OAuth2 vs. SAML).
e Balance security, performance & usability. 5
e Optimize token handling & authentication

workflows.
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