Mastering Seamless
Single Sign-On:

Design, Challenges,
and Implementation

RINKU MOHAN




Without Single Sign On (SSO)

Why Do We Need SSO?

e Before SSO: Users had to log in separately to
each application, leading to password fatigue,
security risks, and inefficiencies.

With SSO

e With SSO: Users authenticate once and gain
access to multiple services seamlessly. i




Core SSO Protocols

OAuth2 (Token-based, modern web y
& mobile apps) 1 —

APP‘lcation

\
 —

SAML (XML-based, legacy
enterprise systems)




OAuth 2.0 authorization code flow

Client

facebook.com

Go to authorization server

\

gResource owner

facebook.com/callb
ack

Loading...

Redirect URI: facebook.com/callback
Response type: code
Scope: contacts

Back to redirect URI with authorization code

Authorization server

accounts.google.com

email
password

|

ol

A

Talk to resource server with access token

- contacts.google.com

1 &8

accounts.google.com

Allow facebook to access your
contacts?

No




SAML SSO Authentication

Corviee virlor
QEervice proviager

&
User tries to access
app

ldentity provider

@

App generates SAML
request

/-

User is logged in
to app

(D

Redirects to identity
provider

@.

App verifies SAML
response

P
L

Identity provider
authenticates user

(-

Identity provider generates

SAML response



Designing a Seamless SSO System

I
Balancing Security, Performance, and User _l
Experience is key. ’&
L
®
b

1. Security: Protect tokens, enable MFA.

2. Performance: Optimize token validation,
cache responses.

3. User Experience: Keep login flows
intuitive.




Security Challenges in SSO

e Single Point of Failure: If your Identity
Provider (IdP) is compromised, attackers
get broad access.

e Token Theft & Replay Attacks:
Attackers can steal and reuse tokens.

e Man-in-the-Middle (MITM) Attacks:
Intercepting token exchanges.




Best Practices for Secure SSO

e Use short-lived tokens & refresh tokens.

e Enforce Multi-Factor Authentication
(MFA).

e Implement token scoping (limit
permissions per token).

e Enable logging & monitoring for
anomaly detection.




Performance Optimization

e Cache authentication tokens to reduce backend load.
e Load balance identity providers to handle high traffic.
e Use async token validation to speed up processing.




UX Considerations for SSO

e Minimize login prompts.
Provide branded login
pages.

e Ensure session
persistence for better
experience.




Integrating with Legacy Systems

e Use SSO gateways to wrap legacy
apps.

e Gradually replace outdated
authentication mechanisms.

e Test compatibility before full rollout.

d__
~




Future of SSO & Authentication

e Zero Trust authentication models.
Al-powered anomaly detection.
Decentralized identity -
(Blockchain-based authentication). b‘“ /

’



LCYAELCEVEVE

e SSO improves security & UX but must be carefully

designed.
e Choose the right protocol (OAuth2 vs. SAML).
e Balance security, performance & usability. 5
e Optimize token handling & authentication

workflows.




THANK YOU

RINKU MOHAN

https://www.linkedin.com/in/rinku-mohan-06419310a/

14



